Skip to main content
Log in

A Frequency Localized Maximum Principle Applied to the 2D Quasi-Geostrophic Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we prove a maximum principle for a frequency localized transport-diffusion equation. As an application, we prove the local well-posedness of the supercritical quasi-geostrophic equation in the critical Besov spaces \({\mathring{B}^{1-\alpha}_{\infty,q}}\), and global well-posedness of the critical quasi-geostrophic equation in \({\mathring{B}^{0}_{\infty,q}}\) for all 1 ≤ q < ∞. Here \({\mathring{B}^{s}_{\infty,q} }\) is the closure of the Schwartz functions in the norm of \({B^{s}_{\infty,q}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi H., Hmidi T.: On the global well-posedness of the critical quasi-geostrophic equation. SIAM J. Math. Anal. 40, 167–185 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bony J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209–246 (1981)

    MATH  MathSciNet  Google Scholar 

  3. Caffarelli L., Vasseur A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chae D., Lee J.: Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Commun. Math. Phys. 233, 297–311 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  5. Chemin J.Y.: Perfect Incompressibe Fluids. Oxford University Press, New York (1998)

    Google Scholar 

  6. Chemin, J.Y.: Localization in Fourier space and Navier-Stokes system. In: Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM Series, Pisa, pp. 53–136

  7. Chen Q., Miao C., Zhang Z.: A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation. Commun. Math. Phys. 271, 821–838 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Constantin P., Córdoba D., Wu J.: On the critical dissipative quasi-geostrophic thermal active scalar. Indiana Univ. Math. J. 50, 97–107 (2001)

    MATH  MathSciNet  Google Scholar 

  9. Constantin P., Majda A., Tabak E.: Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Constantin P., Wu J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Constantin P., Wu J.: Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation. Annal. L’Inst. H. Poincaré Analyse non Linéaire 25, 1103–1110 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Córdoba D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. of Math. 148, 1135–1152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Córdoba D., Fefferman C.: Growth of solutions for QG and 2D Euler equations. J. Amer. Math. Soc. 15, 665–670 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Córdoba A., Córdoba D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249, 511–528 (2004)

    Article  MATH  ADS  Google Scholar 

  15. Danchin, R.: Fourier analysis methods for PDEs, http://perso-math.univ-mlv.fr/users/danchin.raphael/courschine.pdf, 2005

  16. Hmidi T., Keraani S.: Global solutions of the super-critical 2D Q-G equation in Besov spaces. Adv. in Math. 214, 618–638 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ju N.: Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Commun. Math. Phys. 251, 365–376 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Kiselev A., Nazarov F., Volberg A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Pedlosky J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    Book  MATH  Google Scholar 

  20. Stein E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  21. Triebel, H.: Theory of Function Spaces. Monograph in Mathematics, Vol. 78, Basel: Birkhauser Verlag, 1983

  22. Wu J.: Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces. SIAM J. Math. Anal. 36, 1014–1030 (2004)

    Article  MathSciNet  Google Scholar 

  23. Wu J.: The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation. Nonlinearity 18, 139–154 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Zhang P., Zhang Z.: On the local well-posedness for the dumbbell model of polymeric fluids. J. Part. Diff. Eqs. 21, 234–252 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifei Zhang.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Zhang, Z. A Frequency Localized Maximum Principle Applied to the 2D Quasi-Geostrophic Equation. Commun. Math. Phys. 301, 105–129 (2011). https://doi.org/10.1007/s00220-010-1144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1144-2

Keywords

Navigation