Skip to main content
Log in

The Critical Z-Invariant Ising Model via Dimers: Locality Property

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a large class of critical two-dimensional Ising models, namely critical Z-invariant Ising models. Fisher (J Math Phys 7:1776–1781, 1966) introduced a correspondence between the Ising model and the dimer model on a decorated graph, thus setting dimer techniques as a powerful tool for understanding the Ising model. In this paper, we give a full description of the dimer model corresponding to the critical Z-invariant Ising model, consisting of explicit expressions which only depend on the local geometry of the underlying isoradial graph. Our main result is an explicit local formula for the inverse Kasteleyn matrix, in the spirit of Kenyon (Invent Math 150(2):409–439, 2002), as a contour integral of the discrete exponential function of Mercat (Discrete period matrices and related topics, 2002) and Kenyon (Invent Math 150(2):409–439, 2002) multiplied by a local function. Using results of Boutillier and de Tilière (Prob Theor Rel Fields 147(3–4):379–413, 2010) and techniques of de Tilière (Prob Th Rel Fields 137(3–4):487–518, 2007) and Kenyon (Invent Math 150(2):409–439, 2002), this yields an explicit local formula for a natural Gibbs measure, and a local formula for the free energy. As a corollary, we recover Baxter’s formula for the free energy of the critical Z-invariant Ising model (Baxter, in Exactly solved models in statistical mechanics, Academic Press, London, 1982), and thus a new proof of it. The latter is equal, up to a constant, to the logarithm of the normalized determinant of the Laplacian obtained in Kenyon (Invent Math 150(2):409–439, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Au-Yang H., Perk J.H.H.: Q-Dependent Susceptibilities in Ferromagnetic Quasiperiodic Z-invariant Ising Models. J. Stat. Phys. 127, 265–286 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Au-Yang H., Perk J.H.H.: Critical correlations in a Z-invariant inhomogeneous ising model. Physica A: Stat. Theor. Phys. 144(1), 44–104 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  3. Baxter R.J.: Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A 404(1826), 1–33 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  4. Baxter, R.J.: Exactly solved models in statistical mechanics. London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], 1989, reprint of the 1982 original

  5. Boutillier C., de Tilière B.: The critical Z-invariant ising model via dimers: the periodic case. Prob. Theor. & Rel. Fields. 147(3-4), 379–413 (2010)

    Article  MATH  Google Scholar 

  6. Bobenko A.I., Mercat C., Suris Y.B.: Linear and nonlinear theories of discrete analytic functions. Integrable structure +and isomonodromic Green’s function. J. Reine Angew. Math. 583, 117–161 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cimasoni D., Reshetikhin N.: Dimers on surface graphs and spin structures. I. Commun. Math. Phys. 275(1), 187–208 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Cimasoni D., Reshetikhin N.: Dimers on surface graphs and spin structures. II. Commun. Math. Phys. 281(2), 445–468 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Costa-Santos R.: Geometrical aspects of the Z-invariant ising model. Eur. Phys. J. B 53(1), 85–90 (2006)

    Article  ADS  Google Scholar 

  10. Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. http://arXiv.org/abs/0910.2045v1 [math-ph], (2009)

  11. Chelkak, D., Smirnov, S.: Discrete complex analysis on isoradial graphs. Adv. in Math. (to appear), 2010, available at http://arXiv.org/abs/0810.2188v1 [math.CV], 2008

  12. de Tilière B.: Partition function of periodic isoradial dimer models. Prob. Th. Rel. Fields 138(3-4), 451–462 (2007)

    Article  MATH  ADS  Google Scholar 

  13. de Tilière B.: Quadri-tilings of the plane. Prob. Th. Rel. Fields 137(3-4), 487–518 (2007)

    Article  MATH  Google Scholar 

  14. Fisher M.E.: On the Dimer Solution of Planar Iing Models. J. Math. Phys. 7, 1776–1781 (1966)

    Article  ADS  Google Scholar 

  15. Kasteleyn P.W.: The statistics of dimers on a lattice : I. The number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)

    Article  ADS  Google Scholar 

  16. Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph Theory and Theoretical Physics, London: Academic Press, 1967, pp. 43–110

  17. Kenyon R.: The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kenyon R., Schlenker J.-M.: Rhombic embeddings of planar quad-graphs. Trans. Amer. Math. Soc. 357(9), 3443–3458 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kuperberg, G.: An exploration of the permanent-determinant method. Electron. J. Combin. 5, Research Paper 46, 34 pp. (electronic) (1998)

  20. Reyes Martìnez J.R.: Correlation functions for the Z-invariant ising model. Phys. Lett. A 227(3-4), 203–208 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Reyes Martìnez J.R.: Multi-spin correlation functions for the Z-invariant ising model. Physica A: Stat. Theor. Phys. 256(3-4), 463–484 (1998)

    Article  Google Scholar 

  22. Mercat, C.: Discrete period matrices and related topics. http://arXiv.org/abs/math-ph/0111043v2, 2002

  23. Mercat C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1), 177–216 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. McCoy B., Wu F.: The two-dimensional Ising model. Harvard Univ. Press, Cambridge, MA (1973)

    MATH  Google Scholar 

  25. Onsager L.: Crystal statistics. i. a two-dimensional model with an order-disorder transition. Phys. Rev. 65(3-4), 117–149 (1944)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Smirnov, S.: Towards conformal invariance of 2D lattice models. In: Proceedings of the International Congress of Mathematicians, Madrid, Volume 2, Zürich: Eur. Math. Soc., pp. 1421–1452, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice de Tilière.

Additional information

Communicated by S. Smirnov

Supported in part by the Swiss National Foundation Grant 200020-120218/1.

Supported in part by the Swiss National Foundations grants 47102009 and 200020-120218/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boutillier, C., de Tilière, B. The Critical Z-Invariant Ising Model via Dimers: Locality Property. Commun. Math. Phys. 301, 473–516 (2011). https://doi.org/10.1007/s00220-010-1151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1151-3

Keywords

Navigation