Skip to main content
Log in

LSI for Kawasaki Dynamics with Weak Interaction

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a large lattice system of unbounded continuous spins that are governed by a Ginzburg-Landau type potential and a weak quadratic interaction. We derive the logarithmic Sobolev inequality (LSI) for Kawasaki dynamics uniform in the boundary data. The scaling of the LSI constant is optimal in the system size and our argument is independent of the geometric structure of the system. The proof consists of an application of the two-scale approach of Grunewald, Otto, Westdickenberg & Villani. Several ideas are needed to solve new technical difficulties due to the interaction. Let us mention the application of a new covariance estimate, a conditioning technique, and a generalization of the local Cramér theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry, D., Émery, M.: Diffusions hypercontractives. Sem. Probab. XIX, Lecture Notes in Math, 1123. Berlin-Heidelberg-New York: Springer-Verlag, 1985, pp. 177–206

  2. Bodineau T., Helffer B.: The log-Sobolev inequality for unbounded spin systems. J. Funct. Anal. 166(1), 168–178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodineau, T., Helffer, B.: Correlations, spectral gap and log-Sobolev inequalities for unbounded spins systems. In: Differential equations and mathematical physics (Birmingham, AL, 1999), Volume 16 of AMS/IP Stud. Adv. Math., Providence, RI: Amer. Math. Soc., 2000, pp. 51–66

  4. Cancrini N., Martinelli F., Roberto C.: The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited. Ann. Inst. H. Poincaré Probab. Statist. 38(4), 385–436 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Caputo P.: Uniform Poincaré inequalities for unbounded conservative spin systems: the non-interacting case. Stochastic Process. Appl. 106(2), 223–244 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chafaï D.: Glauber versus Kawasaki for spectral gap and logarithmic Sobolev inequalities of some unbounded conservative spin systems. Markov Process. Rel. Fields 9(3), 341–362 (2003)

    MATH  Google Scholar 

  7. Feller, W.: An introduction to probability theory and its applications. Vol II. 2nd ed. Wiley Series in Probability and Mathematical Statistics. New York: John Wiley and Sons, Inc., 1971

  8. Gross L.: Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061–1083 (1975)

    Article  MathSciNet  Google Scholar 

  9. Grunewald N., Otto F., Villani C., Westdickenberg M.: A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit. Ann. Inst. H. Poincaré Probab. Statist. 45(2), 302–351 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Guionnet, A., Zegarlinski, B.: Lectures on logarithmic Sobolev inequalities. In: Séminaire de Probabilités, XXXVI, Volume 1801 of Lecture Notes in Math, Berlin: Springer, 2003, pp. 1–134

  11. Guo M., Papanicolau G., Varadhan S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 118, 31–59 (1988)

    Article  ADS  MATH  Google Scholar 

  12. Helffer B.: Remarks on decay of correlations and Witten Laplacians. III. Application to logarithmic Sobolev inequalities. Ann. Inst. H. Poincaré Probab. Statist. 35(4), 483–508 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Holley R., Stroock D.: Logarithmic Sobolev inequalities and stochastic Ising models. J. Stat. Phys. 46, 1159–1194 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Kipnis, C., Landim, C.: Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften. 320. Berlin: Springer., 1999

  15. Kosygina E.: The behavior of the specific entropy in the hydrodynamic scaling limit. Ann. Probab. 29(3), 1086–1110 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Landim C., Panizo G., Yau H.T.: Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems. Ann. Inst. H. Poincaré Probab. Statist. 38(5), 739–777 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. M. Ledoux. Logarithmic Sobolev inequalities for unbounded spin systems revisted. Sem. Probab. XXXV, Lecture Notes in Math. 1755. Berlin-Heidelberg-New York: Springer-Verlag, 2001, pp. 167–194

  18. Lu S.L., Lu S.L., Lu S.L.: Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Commun. Math. Phys. 156(2), 399–433 (1993)

    Article  ADS  MATH  Google Scholar 

  19. Menz, G.: Equilibrium dynamics of continuous unbounded spin systems. Dissertation, University of Bonn (2011). urn:nbn:de:hbz:5N-25331

  20. Menz, G., Otto, F.: A new covariance estimate. In preparation, 2011

  21. Menz, G., Otto, F.: Uniform logarithmic sobolev inequalities for conservative spin systems with super-quadratic single-site potential. MPI-MIS preprint, Leipzig, 2011

  22. Otto F., Reznikoff M.: A new criterion for the logarithmic Sobolev inequality and two applications. J. Funct. Anal. 243(1), 121–157 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Otto F., Villani C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Royer, G.: Une initiation aux inégalités de Sobolev logarithmiques. Cours Spéc., Soc. Math. France, 1999

  25. Shiryaev, A.N.: Probability. New York: Springer-Verlag, 2nd edition, 1996

  26. Stroock D., Zegarlinski B.: The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition. Commun. Math. Phys. 144, 303–323 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Stroock D., Zegarlinski B.: The logarithmic Sobolev inequality for discrete spin systems on the lattice. Commun. Math. Phys. 149, 175–193 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Stroock D., Zegarlinski B.: On the ergodic properties of glauber dynamics. J. Stat. Phys. 81, 1007–1019 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Yau H.-T.: Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22, 63–80 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Yau H.-T.: Logarithmic Sobolev inequality for lattice gases with mixing conditions. Commun. Math. Phys. 181(2), 367–408 (1996)

    Article  ADS  MATH  Google Scholar 

  31. Yoshida N.: Application of log-Sobolev inequality to the stochastic dynamics of unbounded spin systems on the lattice. J. Funct. Anal. 173, 74–102 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yoshida N.: The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice. Ann. Inst. H. Poincaré Probab. Statist. 37(2), 223–243 (2001)

    Article  ADS  MATH  Google Scholar 

  33. Zegarlinski B.: The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice. Commun. Math. Phys. 175, 401–432 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Menz.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menz, G. LSI for Kawasaki Dynamics with Weak Interaction. Commun. Math. Phys. 307, 817–860 (2011). https://doi.org/10.1007/s00220-011-1326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1326-6

Keywords

Navigation