Skip to main content
Log in

Ergodic Properties of a Model for Turbulent Dispersion of Inertial Particles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a simple stochastic differential equation that models the dispersion of close heavy particles moving in a turbulent flow. In one and two dimensions, the model is closely related to the one-dimensional stationary Schrödinger equation in a random δ-correlated potential. The ergodic properties of the dispersion process are investigated by proving that its generator is hypoelliptic and using control theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bec J.: Multifractal concentrations of inertial particles in smooth random flows. J. Fluid Mech. 528, 255–277 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bec J., Cencini M., Hillerbrand R.: Heavy particles in incompressible flows: the large Stokes number asymptotics. Physica D 226, 11–22 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bec J., Cencini M., Hillerbrand R.: Clustering of heavy particles in random self-similar flow. Phys. Rev. E 75, 025301 (2007)

    Article  ADS  Google Scholar 

  4. Bec J., Cencini M., Hillerbrand R., Turitsyn K.: Stochastic suspensions of heavy particles. Physica D 237, 2037–2050 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Duncan K., Mehlig B., Ostlund S., Wilkinson M.: Clustering in mixing flows. Phys. Rev. Lett. 95, 240602 (2005)

    Article  ADS  Google Scholar 

  6. Elperin T., Kleeorin N., Rogachevskii I.: Self-Excitation of fluctuations of inertial particle concentration in turbulent fluid flow. Phys. Rev. Lett. 77, 5373–5376 (1996)

    Article  ADS  Google Scholar 

  7. Falkovich G., Fouxon A., Stepanov M.G.: Acceleration of rain initiation by cloud turbulence. Nature 419, 151–154 (2002)

    Article  ADS  Google Scholar 

  8. Falkovich G., Gawȩdzki K., Vergassola M.: Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913–975 (2001)

    Article  ADS  MATH  Google Scholar 

  9. Fouxon I., Horvai P.: Separation of heavy particles in turbulence. Phys. Rev. Lett. 100, 040601 (2008)

    Article  ADS  Google Scholar 

  10. Fouxon I., Horvai P.: Fluctuation relation and pairing rule for Lyapunov exponents of inertial particles in turbulence. J. Stat. Mech.: Theor. & Experim. 08, (2007)

    Article  Google Scholar 

  11. Friz, P.K.: An Introduction to Malliavin Calculus, lecture notes, http://www.math.nyu.edu/phd-students/frizpete/malliavin/mall.pdf , 2002

  12. Gawȩdzki, K.: Soluble models of turbulent transport. In: Non-Equilibrium Statistical Mechanics and Turbulence, eds. S. Nazarenko, O. Zaboronski, Cambridge: Cambridge University Press 2008, pp. 44–107

  13. Gradstein, I.S., Rhyzik, I.M.: Table of Integrals, Series, and Products, Vth edition. New York: Academic Press 1994

  14. Halperin B.I.: Green’s functions for a particle in a one-dimensional random potential. Phys. Rev. 139, A104–A117 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  15. Has’minskii, R.Z.: Stochastic Stability of Differential Equations. alphen aanden Rija, Netherlands: Sijthoff and Noordhoff, 1980

  16. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Vol. III, Berlin: Springer, 1985

  17. Horvai, P.: Lyapunov exponent for inertial particles in the 2D Kraichnan model as a problem of Anderson localization with complex valued potential, http://arxiv.org/abs/nlin/0511023v1 [nlin.co], 2005

  18. Kraichnan R.H.: Small scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945–953 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Le Jan Y., Raimond O.: Integration of Brownian vector fields. Ann. Probab. 30, 826–873 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Le Jan Y., Raimond O.: Flows, coalescence and noise. Ann. Probab. 32, 1247–1315 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lifshitz I.M., Gredeskul S., Pastur L.: Introduction to the Theory of Disordered Systems. Wiley, New York (1988)

    Google Scholar 

  22. Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stochastic Process. Appl. 101, 185–232 (2002). doi:10.1016/S0304-4149(02)00150-3 http://dx.doi.org/10.1016/S0304-4149(02)00150-3

  23. Maxey M.R., Riley J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889 (1983)

    Article  ADS  MATH  Google Scholar 

  24. Mehlig B., Wilkinson M.: Coagulation by random velocity fields as a Kramers problem. Phys. Rev. Lett 92, 250602 (2004)

    Article  ADS  Google Scholar 

  25. Mehlig B., Wilkinson M., Duncan K., Weber T., Ljunggren M.: On the aggregation of inertial particles in random flows. Phys. Rev. E 72, 051104 (2005)

    Article  ADS  Google Scholar 

  26. Meyn S.P., Tweedie R.L.: Markov Chains and Stochastic Stability Communication and Control Engineering Series. Springer-Verlag, London (1993)

    Google Scholar 

  27. Meyn S.P., Tweedie R.L.: Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Prob. 25, 518–548 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Norriss, J.: Simplified Malliavin calculus. In: Séminaire de probabilité XX, Lectures Note in Math. 1204, Berlin: Springer, 1986, pp. 101–130

  29. Nualart, D.: Malliavin Calculus and Related Topics, 2nd edition, Berlin-Heidelberg: Springer, 2006

  30. Piterbarg L.: The top Lyapunov exponent for a stochastic flow modeling the upper ocean turbulence. SIAM J. Appl. Math. 62, 777–800 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rey-Bellet, L.: Ergodic properties of Markov processes. In: Open Quantum systems II. The Markovian approach, Lecture notes in Mathematics 1881, Berlin: Springer, 2006, pp. 1–78

  32. Scheutzow M.: Stabilization and destabilization by noise in the plane. Stoch. Anal. Appl. 11, 97–113 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stroock, D.W., Varadhan, S.R.S.: On the support of diffusion processes with applications to the strong maximum principle. In: Proc. 6-th Berkeley Symp. Math. Stat. Prob., Vol. III, Berkeley: Univ. California Press, 1972, pp. 361368

  34. Wilkinson M., Mehlig B.: The path-coalescence transition and its applications. Phys. Rev. E 68, 040101 (2003)

    Article  ADS  Google Scholar 

  35. Wilkinson M., Mehlig B.: Caustics in turbulent aerosols. Europhys. Lett. 71, 186–192 (2005)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Herzog.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawȩdzki, K., Herzog, D.P. & Wehr, J. Ergodic Properties of a Model for Turbulent Dispersion of Inertial Particles. Commun. Math. Phys. 308, 49–80 (2011). https://doi.org/10.1007/s00220-011-1343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1343-5

Keywords

Navigation