Skip to main content
Log in

Characterizations of Categories of Commutative C*-Subalgebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We aim to characterize the category of injective *-homomorphisms between commutative C*-subalgebras of a given C*-algebra A. We reduce this problem to finding a weakly terminal commutative subalgebra of A, and solve the latter for various C*-algebras, including all commutative ones and all type I von Neumann algebras. This addresses a natural generalization of the Mackey–Piron programme: which lattices are those of closed subspaces of Hilbert space? We also discuss the way this categorified generalization differs from the original question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blass A., Sagan B.E.: Möbius functions of lattices. Adv. Math. 127, 94–123 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bunge M.: Internal presheaves toposes. Cahiers de topologie et géométrie différentielle catégoriques 18(3), 291–330 (1977)

    MATH  MathSciNet  Google Scholar 

  3. Bures, D.: Abelian Subalgebras of Von Neumann Algebras. Number 110 in Memoirs. American Mathematical Society, Providence (1971)

  4. Davidson K.R.: C*-algebras by example. American Mathematical Society, Providence (1991)

    Google Scholar 

  5. Döring, A., Isham, C.J.: Topos methods in the foundations of physics. In: Halvorson, H. (ed.) Deep Beauty. Cambridge University Press, Cambridge (2011)

  6. Firby P.A.: Lattices and compactifications I. Proc. Lond. Math. Soc. 27, 22–50 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Firby P.A.: Lattices and compactifications II. Proc. Lond. Math. Soc. 27, 51–60 (1973)

    Article  MATH  Google Scholar 

  8. Funk J.: Semigroups and toposes. Semigr. Forum 75, 480–519 (2007)

    Article  MathSciNet  Google Scholar 

  9. Hamhalter Jan.: Isomorphisms of ordered structures of abelian C*-subalgebras of C*-algebras. J. Math. Anal. Appl. 383, 391–399 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hamhalter J., Turilova E.: Structure of associative subalgebras of Jordan operator algebras. Q. J. Math. 64(2), 397–408 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Harding, J., Döring, A.: Abelian subalgebras and the Jordan structure of a von Neumann algebra. Houst. J. Math. (2014, in press)

  12. Heunen C.: Complementarity in categorical quantum mechanics. Found. Phys. 42(7), 856–873 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Heunen C., Landsman N.P., Spitters B.: A topos for algebraic quantum theory. Commun. Math. Phys. 291, 63–110 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Heunen, C., Landsman, N.P., Spitters, B.: Bohrification. In: Halvorson, H. (ed.) Deep Beauty. Cambridge University Press, Cambridge (2011)

  15. Heunen C., Reyes M.L.: Diagonalizing matrices over AW*-algebras. J. Funct. Anal. 264(8), 1873–1898 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Heunen C., Reyes M.L.: Active lattices determine AW*-algebras. J. Math. Anal. Appl. 416, 289–313 (2014)

    Article  MathSciNet  Google Scholar 

  17. Johnstone P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press, Oxford (2002)

    Google Scholar 

  18. Kadison R.V., Ringrose J.R.: Fundamentals of the Theory of Operator Algebras. Academic Press, London (1983)

    MATH  Google Scholar 

  19. Kalmbach G.: Orthomodular Lattices. Academic Press, London (1963)

    Google Scholar 

  20. Kalmbach G.: Measures and Hilbert lattices. World Scientific, Singapore (1986)

    Book  MATH  Google Scholar 

  21. Mac Lane S., Moerdijk I.: Sheaves in Geometry and Logic. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  22. Piron, C.: Foundations of Quantum Physics. Number 19 in Mathematical Physics Monographs. W.A. Benjamin, Reading (1976)

  23. Rédei M.: Quantum Logic in Algebraic Approach. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  24. Segal, I.: Decompositions of Operator Algebras II: Multiplicity Theory. Number 9 in Memoirs. American Mathematical Society, Providence (1951)

  25. Sinclair, A.M., Smith, R.R.: Finite von Neumann Algebras and Masas. Number 351 in London Mathematical Society lecture notes. Cambridge University Press, Cambridge (2008)

  26. Solèr M.P.: Characterization of Hilbert spaces by orthomodular spaces. Commun. Algebra 23(1), 219–243 (1995)

    Article  MATH  Google Scholar 

  27. Tomiyama J.: On some types of maximal abelian subalgebras. J. Funct. Anal. 10, 373–386 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  28. van den Berg B., Heunen C.: No-go theorems for functorial localic spectra of noncommutative rings. Electron. Proc. Theor. Comput. Sci. 95, 21–25 (2012)

    Article  Google Scholar 

  29. van den Berg B., Heunen C.: Noncommutativity as a colimit. Appl. Categ. Struct. 20(4), 393–414 (2012)

    Article  MATH  Google Scholar 

  30. Wilce, A.: Test spaces. In: Handbook of Quantum Logic, vol. II. Elsevier, Amsterdam (2008)

  31. Yoon Y.-J.: Characterizations of partition lattices. Bull. Korean Math. Soc. 31(2), 237–242 (1994)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Heunen.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heunen, C. Characterizations of Categories of Commutative C*-Subalgebras. Commun. Math. Phys. 331, 215–238 (2014). https://doi.org/10.1007/s00220-014-2088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2088-8

Keywords

Navigation