Skip to main content
Log in

Surjectivity for Hamiltonian loop group spaces

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let G be a compact Lie group, and let LG denote the corresponding loop group. Let (X,ω) be a weakly symplectic Banach manifold. Consider a Hamiltonian action of LG on (X,ω), and assume that the moment map μ:XL \(\mathfrak{g}\) * is proper. We consider the function |μ|2:X→ℝ, and use a version of Morse theory to show that the inclusion map j-1(0)→X induces a surjection j *:H G *(X)→H G *-1(0)), in analogy with Kirwan’s surjectivity theorem in the finite-dimensional case. We also prove a version of this surjectivity theorem for quasi-Hamiltonian G-spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Differ. Geom. 48, 445–495 (1998)

    Google Scholar 

  2. Alexeev, A., Meinrenken, E., Woodward, C.: Duistemaat-Heckman measures and moduli spaces of flat bundles over surfaces. GAFA 12, 1–31 (2002)

    Google Scholar 

  3. Atiyah, M., Bott, R.: The Yang-Mills functional over a Riemann surface. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 308, 523–615 (1982)

    Google Scholar 

  4. Bott, R.: The stable homotopy of the classical groups. Ann. Math. 70, 313–337 (1957)

    MATH  Google Scholar 

  5. Bott, R., Tu, L.: Differential forms in algebraic topology. New York: Springer 1982

  6. Carey, A.L., Murray, M.K.: String structures and the path fibration of a group. Commun. Math. Phys. 141, 441–452 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Frankel, T.: Fixed points on Kahler manifolds. Ann. Math. 70, 1–8 (1959)

    MATH  Google Scholar 

  8. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge: Cambridge University Press 1984

  9. Guillemin, V., Sternberg, S.: Supersymmetry and equivariant de Rham theory. New York: Springer 1999

  10. Killingback, T.: World-sheet anomalies and loop geometry. Nucl. Phys. B 288, 578–588 (1987)

    Article  MathSciNet  Google Scholar 

  11. Kirwan, F.C.: The cohomology of quotients in symplectic and algebraic geometry. Princeton: Princeton University Press 1984

  12. Milnor, J.: Morse Theory. Princeton: Princeton University Press 1963

  13. Meinrenken, E., Woodward, C.: Hamiltonian loop group actions and Verlinde factorization. J. Differ. Geom. 50, 417–469 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Pressley, A., Segal, G.: Loop groups. Oxford: Oxford University Press 1986

  15. Racaniere, S.: Cohomologie equivariante de SU(n)2g et application de Kirwan. C. R. Acad. Sci. 333, 103–108 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Woodward, C.: A Kirwan-Ness stratification for loop groups. Preprint, math.SG/0211231

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raoul Bott, Susan Tolman or Jonathan Weitsman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bott, R., Tolman, S. & Weitsman, J. Surjectivity for Hamiltonian loop group spaces . Invent. math. 155, 225–251 (2004). https://doi.org/10.1007/s00222-003-0319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-003-0319-2

Keywords

Navigation