Skip to main content
Log in

On the existence of collisionless equivariant minimizers for the classical n-body problem

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We show that the minimization of the Lagrangian action functional on suitable classes of symmetric loops yields collisionless periodic orbits of the n-body problem, provided that some simple conditions on the symmetry group are satisfied. More precisely, we give a fairly general condition on symmetry groups G of the loop space Λ for the n-body problem (with potential of homogeneous degree -α, with α>0) which ensures that the restriction of the Lagrangian action \(\mathcal{A}\) to the space ΛG of G-equivariant loops is coercive and its minimizers are collisionless, without any strong force assumption. In proving that local minima of ΛG are free of collisions we develop an averaging technique based on Marchal’s idea of replacing some of the point masses with suitable shapes (see [10]). As an application, several new orbits can be found with some appropriate choice of G. Furthermore, the result can be used to give a simplified and unitary proof of the existence of many already known minimizing periodic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A.: Critical points and nonlinear variational problems. Mém. Soc. Math. Fr., Nouv. Sér. 49, 139 (1992)

    Google Scholar 

  2. Ambrosetti, A., Coti Zelati, V.: Periodic solutions of singular Lagrangian systems, vol. 10 of Progress in Nonlinear Differential Equations and their Applications. Boston, MA: Birkhäuser Boston Inc. 1993

  3. Arioli, G., Gazzola, F., Terracini, S.: Minimization properties of Hill’s orbits and applications to some N-body problems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 17, 617–650 (2000)

    Google Scholar 

  4. Bahri, A., Rabinowitz, P.H.: Periodic solutions of Hamiltonian systems of 3-body type. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 8, 561–649 (1991)

    Google Scholar 

  5. Bessi, U., Coti Zelati, V.: Symmetries and noncollision closed orbits for planar N-body-type problems. Nonlinear Anal. 16, 587–598 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, K.-C.: Action-minimizing orbits in the parallelogram four-body problem with equal masses. Arch. Ration. Mech. Anal. 158, 293–318 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, K.-C.: Binary decompositions for planar n-body problems and symmetric periodic solutions. Preprint (2003)

  8. Chenciner, A.: Collisions totales, mouvements complètement paraboliques et réduction des homothéties dans le problème des n corps. Regul. Chaotic Dyn. 3, 93–106 (1998) J. Moser at 70 (Russian)

    Google Scholar 

  9. Chenciner, A.: Action minimizing periodic orbits in the Newtonian n-body problem. In: Celestial mechanics (Evanston, IL, 1999), pp. 71–90. Providence, RI: Am. Math. Soc. 2002

  10. Chenciner, A.: Action minimizing solutions of the newtonian n-body problem: from homology to symmetry, August 2002. ICM, Peking

  11. Chenciner, A.: Simple non-planar periodic solutions of the n-body problem. In: Proceedings of the NDDS Conference, Kyoto 2002

  12. Chenciner, A., Gerver, J., Montgomery, R., Simó, C.: Simple choreographic motions of N bodies: a preliminary study. In: Geometry, mechanics, and dynamics, pp. 287–308. New York: Springer 2002

  13. Chenciner, A., Montgomery, R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. Math. (2) 152, 881–901 (2000)

    Google Scholar 

  14. Chenciner, A., Venturelli, A.: Minima de l’intégrale d’action du problème newtonien de 4 corps de masses égales dans ℝ3: orbites “hip-hop”. Celest. Mech. Dyn. Astron. 77, 139–152 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dacorogna, B.: Direct methods in the calculus of variations, vol. 78 of Applied Mathematical Sciences. Berlin: Springer 1989

  16. Dell’Antonio, G.: Non-collision periodic solutions of the N-body system. NoDEA, Nonlinear Differ. Equ. Appl. 5, 117–136 (1998)

    Google Scholar 

  17. ElBialy, M.S.: Collision singularities in celestial mechanics. SIAM J. Math. Anal. 21, 1563–1593 (1990)

    MathSciNet  MATH  Google Scholar 

  18. Ferrario, D.L.: Symmetric periodic orbits for the n-body problem: some preliminary results, 2002. Preprint of the Max–Planck–Institut für Mathematik MPI-2002-79

  19. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.3, 2002. (http://www.gap-system.org)

  20. Gordon, W.B.: Conservative dynamical systems involving strong forces. Trans. Am. Math. Soc. 204, 113–135 (1975)

    MATH  Google Scholar 

  21. Majer, P., Terracini, S.: On the existence of infinitely many periodic solutions to some problems of n-body type. Commun. Pure Appl. Math. 48, 449–470 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Marchal, C.: The family P 12 of the three-body problem – the simplest family of periodic orbits, with twelve symmetries per period. Celest. Mech. Dyn. Astron. 78, 1–4 (2000), 279–298 (2001). New developments in the dynamics of planetary systems (Badhofgastein, 2000)

    MATH  Google Scholar 

  23. Marchal, C.: How the method of minimization of action avoids singularities. Celest. Mech. Dyn. Astron. 83, 325–353 (2002)

    Article  MATH  Google Scholar 

  24. Montgomery, R.: The N-body problem, the braid group, and action-minimizing periodic solutions. Nonlinearity 11, 363–376 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Montgomery, R.: Action spectrum and collisions in the planar three-body problem. In: Celestial mechanics (Evanston, IL, 1999), vol. 292 of Contemp. Math., pp. 173–184. Providence, RI: Am. Math. Soc. 2002

  26. Moore, C.: Braids in classical dynamics. Phys. Rev. Lett. 70, 3675–3679 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    MathSciNet  MATH  Google Scholar 

  28. Poincaré, H.: Sur les solutions périodiques et le principe de moindre action. C. R. Acad. Sci., Paris, Sér. I, Math. 123, 915–918 (1896)

    Google Scholar 

  29. Riahi, H.: Study of the critical points at infinity arising from the failure of the Palais-Smale condition for n-body type problems. Mem. Am. Math. Soc. 138, 658 (1999), viii+112

    Google Scholar 

  30. Sbano, L.: The topology of the planar three-body problem with zero total angular momentum and the existence of periodic orbits. Nonlinearity 11, 641–658 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Serra, E., Terracini, S.: Collisionless periodic solutions to some three-body problems. Arch. Ration. Mech. Anal. 120, 305–325 (1992)

    MathSciNet  MATH  Google Scholar 

  32. Serra, E., Terracini, S.: Noncollision solutions to some singular minimization problems with Keplerian-like potentials. Nonlinear Anal. 22, 45–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sperling, H. J.: On the real singularities of the N-body problem. J. Reine Angew. Math. 245, 15–40 (1970)

    MATH  Google Scholar 

  34. Terracini, S., Venturelli, A.: Article in preparation (2003)

  35. Venturelli, A.: Application de la minimisation de l’action au Problème des N corps dans le plan et dans l’espace. Thesis, University Paris VII, December 2002

  36. Wintner, A.: The Analytical Foundations of Celestial Mechanics. Princeton Mathematical Series, v. 5., Princeton, N.J.: Princeton University Press 1941

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Davide L. Ferrario or Susanna Terracini.

Additional information

Mathematics Subject Classification (2000)

70F10, 70F16, 37C80, 70G75

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrario, D., Terracini, S. On the existence of collisionless equivariant minimizers for the classical n-body problem. Invent. math. 155, 305–362 (2004). https://doi.org/10.1007/s00222-003-0322-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-003-0322-7

Keywords

Navigation