Skip to main content
Log in

Einstein metrics and complex singularities

  • Published:
Inventiones mathematicae Aims and scope

Abstract

This paper is concerned with the construction of special metrics on non-compact 4-manifolds which arise as resolutions of complex orbifold singularities. Our study is close in spirit to the construction of the hyperkähler gravitational instantons, but we focus on a different class of singularities. We show that any resolution X of an isolated cyclic quotient singularity admits a complete scalar-flat Kähler metric (which is hyperkähler if and only if K X is trivial), and that if K X is strictly nef, then X also admits a complete (non-Kähler) self-dual Einstein metric of negative scalar curvature. In particular, complete self-dual Einstein metrics are constructed on simply-connected non-compact 4-manifolds with arbitrary second Betti number.

Deformations of these self-dual Einstein metrics are also constructed: they come in families parameterized, roughly speaking, by free functions of one real variable.

All the metrics constructed here are toric (that is, the isometry group contains a 2-torus) and are essentially explicit. The key to the construction is the remarkable fact that toric self-dual Einstein metrics are given quite generally in terms of linear partial differential equations on the hyperbolic plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M.T.: Einstein metrics with prescribed conformal infinity on 4-manifolds. Preprint, SUNY Stony Brook 2001, math.DG/0105243

  2. Barth, W., Peters, C., Van de Ven, A.: Compact Complex Surfaces. Berlin, Heidelberg, New York, Tokyo: Springer 1984

  3. Belgun, F.A.: Normal CR structures on compact 3-manifolds. Math. Z. 238, 441–460 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Besse, A.L.: Einstein Manifolds. Ergeb. Math. Grenzgeb. 10. Berlin: Springer 1987

  5. Bielawski, R., Dancer, A.S.: The geometry and topology of toric hyperkähler manifolds. Commun. Anal. Geom. 8, 727–760 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Biquard, O.: Métriques autoduales sur la boule. Preprint, IRMA Strasbourg 2000, math.DG/0010188

  7. Biquard, O.: Métriques d’Einstein asymptotiquement symétriques. Astérisque 265 (2000)

  8. Boyer, C.P., Galicki, K., Mann, B.M., Rees, E.G.: Compact 3-Sasakian 7-manifolds with arbitrary second Betti number. Invent. Math. 131, 321–344 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calderbank, D.M.J., Pedersen, H.: Selfdual Einstein metrics with torus symmetry. J. Differ. Geom. (to appear), math.DG/0105263

  10. Eells, J., Salamon, S.: Twistorial Construction of Harmonic Maps of Surfaces into Four-Manifolds. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 12, 489–640 (1985)

    Google Scholar 

  11. Fefferman, C., Graham, C.R.: Conformal invariants. In: The Mathematical Heritage of Élie Cartan. Lyon 1984. Astérisque 95–116 (1985)

  12. Gibbons, G.W., Hawking, S.W.: Gravitational multi-instantons. Phys. Lett. B 78, 430–432 (1978)

    Article  Google Scholar 

  13. Graham, C.R., Lee, J.M.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87, 186–225 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Hitchin, N.J.: Polygons and gravitons. Math. Proc. Camb. Philos. Soc. 85, 465–476 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Hitchin, N.J.: Twistor spaces, Einstein metrics and isomonodromic deformations. J. Differ. Geom. 42, 30–112 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Joyce, D.D.: The hypercomplex quotient and the quaternionic quotient. Math. Ann. 290, 323–340 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Joyce, D.D.: Quotient constructions for compact self-dual 4-manifolds. Oxford: Merton College 1991

  18. Joyce, D.D.: Explicit construction of self-dual 4-manifolds. Duke Math. J. 77, 519–552 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Kovalev, A.G., Singer, M.A.: Gluing theorems for complete anti-self-dual spaces. Geom. Funct. Anal. 11, 1229–1281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kronheimer, P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29, 665–683 (1989)

    MathSciNet  MATH  Google Scholar 

  21. LeBrun, C.R.: ℋ-space with a cosmological constant. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 380, 171–185 (1982)

    Google Scholar 

  22. LeBrun, C.R.: Counterexamples to the generalized positive action conjecture. Commun. Math. Phys. 118, 591–596 (1988)

    MathSciNet  MATH  Google Scholar 

  23. LeBrun, C.R.: Explicit self-dual metrics on ℂP 2···ℂP 2. J. Differ. Geom. 34, 223–253 (1991)

    MathSciNet  MATH  Google Scholar 

  24. LeBrun, C.R.: On complete quaternionic-Kähler manifolds. Duke Math. J. 63, 723–743 (1991)

    MathSciNet  MATH  Google Scholar 

  25. Mazzeo, R.R.: Private communication

  26. Orlik, P., Raymond, F.: Actions of the torus on 4-manifolds I. Trans. Amer. Math. Soc. 152, 531–559 (1970)

    MATH  Google Scholar 

  27. Pedersen, H.: Einstein metrics, spinning top motions and monopoles. Math. Ann. 274, 35–39 (1986)

    MathSciNet  MATH  Google Scholar 

  28. Pedersen, H., Poon, Y.S.: Hyper-Kähler metrics and a generalization of the Bogomolny equations. Commun. Math. Phys. 117, 569–580 (1988)

    MathSciNet  MATH  Google Scholar 

  29. Reid, M.: Young person’s guide to canonical singularities. Proc. Symp. Pure Math. 46, 345–414 (1987)

    MATH  Google Scholar 

  30. Rollin, Y.: Rigidité d’Einstein du plan hyperbolique complexe. C. R. Acad. Sci., Paris, Sér. I, Math. 334, 671–676 (2002)

    Google Scholar 

  31. Tod, K.P.: Self-dual Einstein metrics from the Painlevé VI equation. Phys. Lett. A 190, 221–224 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David M.J. Calderbank or Michael A. Singer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calderbank, D., Singer, M. Einstein metrics and complex singularities. Invent. math. 156, 405–443 (2004). https://doi.org/10.1007/s00222-003-0344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-003-0344-1

Keywords

Navigation