Skip to main content
Log in

Numerical equivalence defined on Chow groups of Noetherian local rings

  • Published:
Inventiones mathematicae Aims and scope

Abstract

In the present paper, we define a notion of numerical equivalence on Chow groups or Grothendieck groups of Noetherian local rings, which is an analogue of that on smooth projective varieties. Under a mild condition, it is proved that the Chow group modulo numerical equivalence is a finite dimensional ℚ-vector space, as in the case of smooth projective varieties. Numerical equivalence on local rings is deeply related to that on smooth projective varieties. For example, if Grothendieck’s standard conjectures are true, then a vanishing of Chow group (of local rings) modulo numerical equivalence can be proven. Using the theory of numerical equivalence, the notion of numerically Roberts rings is defined. It is proved that a Cohen–Macaulay local ring of positive characteristic is a numerically Roberts ring if and only if the Hilbert–Kunz multiplicity of a maximal primary ideal of finite projective dimension is always equal to its colength. Numerically Roberts rings satisfy the vanishing property of intersection multiplicities. We shall prove another special case of the vanishing of intersection multiplicities using a vanishing of localized Chern characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dutta, S.P., Hochster, M., MacLaughlin, J.E.: Modules of finite projective dimension with negative intersection multiplicities. Invent. Math. 79, 253–291 (1985)

    MathSciNet  MATH  Google Scholar 

  2. Fulton, W.: Intersection Theory, 2nd edition. Berlin, New York: Springer 1997

  3. Gillet, H., Soulé, C.: Intersection theory using Adams operation. Invent. Math. 90, 243–277 (1987)

    MathSciNet  MATH  Google Scholar 

  4. Hartshorne, R.: Algebraic Geometry. Grad. Texts Math. 52. Berlin, New York: Springer 1977

  5. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79, 109–326 (1964)

    MATH  Google Scholar 

  6. Ishii, S., Milman, P.: The geometric minimal models of analitic spaces. Math. Ann. 323, 437–451 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Jong, A.J.: Smoothness, semi-stability and alterations. Publ. Math., Inst. Hautes Étud. Sci. 83, 51–93 (1996)

    Google Scholar 

  8. Kamoi, Y., Kurano, K.: On maps of Grothendieck groups induced by completion. J. Algebra 254, 21–43 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kurano, K.: An approach to the characteristic free Dutta multiplicities. J. Math. Soc. Jap. 45, 369–390 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Kurano, K.: A remark on the Riemann–Roch formula for affine schemes associated with Noetherian local rings. Tohoku Math. J., II. Ser. 48, 121–138 (1996)

    Google Scholar 

  11. Kurano, K.: Test modules to calculate Dutta Multiplicities. J. Algebra 236, 216–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kurano, K.: On Roberts rings. J. Math. Soc. Jap. 53, 333–355 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Kurano, K.: Roberts rings and Dutta multiplicities. Geometric and combinatorial aspects of commutative algebra, pp. 273–287. Lect. Notes Pure Appl. Math. 217. New York: Marcel Dekker 2001

  14. Kurano, K., Roberts, P.C.: Adams operations, localized Chern characters, and the positivity of Dutta multiplicity in characteristic 0. Trans. Am. Math. Soc. 352, 3103–3116 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurano, K., Singh, A.K.: Todd classes of affine cones of Grassmannians. Int. Math. Res. Not. 35, 1841–1855 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Levine, M.: Localization on singular varieties. Invent. Math. 91, 423–464 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Lewis, J.D.: A survey of the Hodge conjecture, 2nd edition. CRM Monogr. Ser. 10. Providence, RI: Am. Math. Soc. 1999

  18. Lütkebohmert, W.: On compactification of schemes. Manuscr. Math. 80, 95–111 (1993)

    MathSciNet  Google Scholar 

  19. Matsumura, H.: Commutative ring theory. Camb. Stud. Adv. Math. 8. Cambridge, New York: Cambridge Univ. Press 1989

  20. Miller, C.M., Singh, A.K.: Intersection multiplicities over Gorenstein rings. Math. Ann 317, 155–171 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Monsky, P.: The Hilbert–Kunz function. Math. Ann. 263, 43–49 (1983)

    MathSciNet  MATH  Google Scholar 

  22. Nagata, M.: Local Rings. Interscience Tracts in Pure and Appl. Math. New York: Wiley 1962

  23. Nagata, M.: A generalization of the imbedding problem of an abstract variety in a complete variety. J. Math. Kyoto Univ. 3, 89–102 (1963)

    MATH  Google Scholar 

  24. Ogoma, T.: General Néron desingularization based on the idea of Popescu. J. Algebra 167, 57–84 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Popescu, D.: General Néron desingularization and approximation. Nagoya Math. J. 104, 85–115 (1986)

    MathSciNet  MATH  Google Scholar 

  26. Roberts, P.C.: The vanishing of intersection multiplicities and perfect complexes. Bull. Am. Math. Soc. 13, 127–130 (1985)

    MathSciNet  MATH  Google Scholar 

  27. Roberts, P.C.: Local Chern characters and intersection multiplicities. Proc. Symp. Pure Math. 46, 389–400 (1987)

    MATH  Google Scholar 

  28. Roberts, P.C.: MacRae invariant and the first local chern character. Trans. Am. Math. Soc. 300, 583–591 (1987)

    MathSciNet  MATH  Google Scholar 

  29. Roberts, P.C., Srinivas, V.: Modules of finite length and finite projective dimension. Invent. Math. 151, 1–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Serre, J.-P.: Algèbre locale, Multiplicités. Lect. Notes Math. 11. Berlin, New York: Springer 1965

  31. Srinivas, V.: Algebraic K-theory, Second edition. Prog. Math. 90. Boston, MA: Birkhäuser 1996

  32. Swan, R.: K-theory of quadratic hypersurfaces. Ann. Math. 122, 113–154 (1985)

    MathSciNet  MATH  Google Scholar 

  33. Thomason, R.W., Trobaugh, T.: Higher algebraic K-theory of schemes and of derived categories. The Grothendieck Festschrift, Vol. III, pp. 247–435, Prog. Math. 88. Boston, MA: Birkhäuser 1990

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Kurano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurano, K. Numerical equivalence defined on Chow groups of Noetherian local rings. Invent. math. 157, 575–619 (2004). https://doi.org/10.1007/s00222-004-0361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-004-0361-8

Keywords

Navigation