Skip to main content
Log in

Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra

  • Published:
Inventiones mathematicae Aims and scope

Abstract

If \(\mathfrak{g}\) is a complex simple Lie algebra, and k does not exceed the dual Coxeter number of \(\mathfrak{g}\), then the absolute value of the kth coefficient of the \(\dim\mathfrak{g}\) power of the Euler product may be given by the dimension of a subspace of \(\wedge^k\mathfrak{g}\) defined by all abelian subalgebras of \(\mathfrak{g}\) of dimension k. This has implications for all the coefficients of all the powers of the Euler product. Involved in the main results are Dale Peterson’s 2rank theorem on the number of abelian ideals in a Borel subalgebra of \(\mathfrak{g}\), an element of type ρ and my heat kernel formulation of Macdonald’s η-function theorem, a set Dalcove of special highest weights parameterized by all the alcoves in a Weyl chamber (generalizing Young diagrams of null m-core when \(\mathfrak{g}= \text{Lie}\,\mathit{Sl}(m,\mathbb{C})\)), and the homology and cohomology of the nil radical of the standard maximal parabolic subalgebra of the affine Kac–Moody Lie algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adin, R., Frumkin, A.: Rim Hook tableau and Kostant’s η-Function Coefficients. arXiv:math. CO/0201003 v2

  2. Bott, R.: An Application of the Morse Theory to the Topology of Lie Groups. Bull. Soc. Math. Fr. 84, 251–281 (1956)

    MathSciNet  MATH  Google Scholar 

  3. Cellini, P., Papi, P.: ad-Nilpotent Ideals of a Borel Subalgebra. J. Algebra 225, 130–141 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fegan, H.D.: The heat equation and modular forms. J. Differ. Geom. 13, 589–602 (1978)

    MathSciNet  MATH  Google Scholar 

  5. Garland, H.: Dedekind’s η-function and the cohomology of infinite dimensional Lie algebras. Proc. Natl. Acad. Sci. USA 72, 2493–2495 (1975)

    MATH  Google Scholar 

  6. Garland, H.: Lepowsky, J.: Lie algebra homology and the Macdonald–Kac formulas. Invent. Math. 34, 37–76 (1976)

    MATH  Google Scholar 

  7. Kac, V.: Infinite Dimensional Lie Algebras. Cambridge: Cambridge 1990

  8. Kostant, B.: Lie algebra cohomology and the generalized Borel–Weil theorem. Ann. Math. (2) 74, 329–387 (1961)

    Google Scholar 

  9. Kostant, B.: Eigenvalues of a Laplacian and Commutative Lie subalgebras. Topology 3, 147–159 (1965)

    Article  MATH  Google Scholar 

  10. Kostant, B.: On Macdonald’s η-function Formula, the Lapalacian and Generalized Exponents. Adv. Math. 20, 179–212 (1976)

    MATH  Google Scholar 

  11. Kostant, B.: The McKay correspondence, the Coxeter element and representation theory. Astérisque, hors série, 209–255. Paris: Société Mathématique de France 1985

  12. Kostant, B.: The set of Abelian ideals of a Borel Subalgebra, Cartan decompositions and Discrete Series Representations. Int. Math. Res. Not. 5, 225–252 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kostant, B.: On \(\wedge\mathfrak{g}\) for a Semisimple Lie Algebra \(\mathfrak{g}\), as an Equivariant Module over the Symmetric Algebra S(\(\mathfrak{g}\)). Adv. Stud. Pure Math. 26 (2000); Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, 129–144

  14. Kumar, S.: Geometry of Schubert cells and cohomology of Kac–Moody Lie algebras. J. Differ. Geom. 20, 389–431 (1984)

    MathSciNet  MATH  Google Scholar 

  15. Kumar, S.: Kac–Moody Groups, their Flag Varieties and Representation Theory. PM 204. Boston: Birkhäuser 2002

  16. Lehmer, D.H.: Ramanujan’s function τ(n). Duke Math J. 30, 483–492 (1943)

    MathSciNet  Google Scholar 

  17. Macdonald, I.G.: Affine root systems and Dedekind’s η-function. Invent. Math. 15, 91–143 (1972)

    MATH  Google Scholar 

  18. Macdonald, I.G.: Symmetric functions and Hall Polynomials (2nd Ed.). Oxford 1995

  19. J-Serre, P.: A Course in Arithmetic. GTM 7. Springer 1973

  20. Stanley, R.P.: Enumerative Combinatorics. 2. Cambridge 1999

  21. Suter, R.: Abelian ideals in a Borel subalgebra of a complex simple Lie algebra. arXiv:math.RT/0210463 v1, 30 Oct 2002; Invent. Math. 156, 175–221 (2004)

    Google Scholar 

  22. Zelditch, S.: Macdonald’s Identities and the Large N Limit of YM2 on the Cylinder. Commun. Math. Phys. 245, 611–626 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram Kostant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostant, B. Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra. Invent. math. 158, 181–226 (2004). https://doi.org/10.1007/s00222-004-0370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-004-0370-7

Keywords

Navigation