Skip to main content
Log in

The Cauchy problem for quasi-linear Schrödinger equations

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ablowitz, M.J., Haberman, R.: Nonlinear evolution equations in two and three dimensions. Phys. Rev. Lett. 35, 1185–1188 (1975)

    Article  Google Scholar 

  2. Bona, J.L., Smith, R.: The initial value problem for the Korteweg-de Vries equation. Proc. R. Soc. Lond., Ser. A 278, 555–601 (1978)

    Google Scholar 

  3. de Bouard, A., Hayashi, N., Saut, J.-C.: Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Commun. Math. Phys. 189, 73–105 (1997)

    Article  MATH  Google Scholar 

  4. Calderón, A.P.: Integrales singulares con aplicaciones a las ecuaciones hiperbolicas. Cursos y Seminarios de Matematicas. Universidad de Buenos Aires 1960

  5. Calderón, A.P., Vaillancourt, R.: A class of bounded pseudo-differential operators. Proc. Natl. Acad. Sci. USA 69, 1185–1187 (1972)

    Google Scholar 

  6. Cazenave, T.: An introduction to nonlinear Schrödinger equations. Textos de Métodos Matemáticos 22. Universidade Federal do Rio de Janeiro 1989

  7. Chihara, H.: Local existence for semilinear Schrödinger equations. Math. Jap. 42, 35–52 (1995)

    MATH  Google Scholar 

  8. Chihara, H.: The initial value problem for Schrödinger equations on the torus. Int. Math. Res. Not. 15, 789–820 (2002)

    Article  MATH  Google Scholar 

  9. Craig, W., Kappeler T., Strauss, W.: Microlocal dispersive smoothing for the Schrödinger equation. Commun. Pure Appl. Math. 48, 769–860 (1995)

    MATH  Google Scholar 

  10. Colin, M.: On the local well-posedness of quasilinear Schrödinger equations in arbitrary space dimension. Commun. Partial Differ. Equations 27, 325–354 (2002)

    Article  MATH  Google Scholar 

  11. Constantin, P., Saut, J.-C.: Local smoothing properties of dispersive equations. J. Am. Math. Soc. 1, 413–446 (1989)

    MATH  Google Scholar 

  12. Davey, A., Stewartson, K.: On three dimensional packets of surface waves. Proc. R. Soc. Lond., Ser. A 338, 101–110 (1974)

    Google Scholar 

  13. Doi, S.: On the Cauchy problem for Schrödinger type equations and the regularity of the solutions. J. Math. Kyoto Univ. 34, 319–328 (1994)

    MATH  Google Scholar 

  14. Doi, S.: Remarks on the Cauchy problem for Schrödinger type equations. Commun. Partial Differ. Equations 21, 163–178 (1996)

    MATH  Google Scholar 

  15. Doi, S.: Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow. Math. Ann. 318, 355–389 (2000)

    Article  MATH  Google Scholar 

  16. Hayashi, N., Ozawa, T.: Remarks on nonlinear Schrödinger equations in one space dimension. Differ. Integral Equ. 2, 453–461 (1994)

    MATH  Google Scholar 

  17. Hörmander, L.: The Analysis of Linear Partial Differential Operators III. New York: Springer 1984

  18. Hughes, T., Kato, T., Marsden, J.E.: Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Ration. Mech. Anal. 63, 273–294 (1977)

    Article  MATH  Google Scholar 

  19. Ichinose, W.: Some remarks on the Cauchy problem for Schrödinger type equations. Osaka J. Math. 21, 565–581 (1984)

    MATH  Google Scholar 

  20. Ishimori, Y.: Multi vortex solutions of a two dimensional nonlinear wave equation. Theor. Phys 72, 33–37 (1984)

    MATH  Google Scholar 

  21. Kato, T.: Quasilinear equations of evolutions, with applications to partial differential equation. Lect. Notes Math. 448, 27–50. Berlin: Springer 1975

    Google Scholar 

  22. Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Advances in Math. Supp. Studies. Stud. Appl. Math. 8, 93–128 (1983)

    MATH  Google Scholar 

  23. Kenig, C.E., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40, 33–69 (1991)

    MATH  Google Scholar 

  24. Kenig, C.E., Ponce, G., Vega, L.: Small solutions to nonlinear Schrödinger equations. Ann. Inst. Henry Poincaré 10, 255–288 (1993)

    MATH  Google Scholar 

  25. Kenig, C.E., Ponce, G., Vega, L.: On the Cauchy problem for linear Schrödinger systems with variable coefficient lower order terms. Can. Math. Soc. Conf. Proc. 21, 205–227 (1997)

    MATH  Google Scholar 

  26. Kenig, C.E., Ponce, G., Vega, L.: Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations. Invent. Math. 134, 489–545 (1998)

    Article  MATH  Google Scholar 

  27. Kenig, C.E., Ponce, G., Rolvung, C., Vega, L.: Variable coefficient Schrödinger flows for ultrahyperbolic operators. Preprint

  28. Konopelchenko, B.G., Matkarimov, B.T.: On the inverse scattering transform of the Ishimori equations. Phys. Lett. A 135, 183–189 (1989)

    Article  Google Scholar 

  29. Kruzhkov, S.N., Faminskii, A.V.: Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation. Mat. Sb. USSR 48, 93–138 (1984)

    Google Scholar 

  30. Kumano-go, H.: Pseudo-differential operators. Cambridge: MIT Press 1981

  31. Lim, W.-K., Ponce, G.: On the initial value problem for the one dimensional quasilinear Schrödinger equation. SIAM J. Math. Anal. 34, 435–459 (2003)

    Article  MATH  Google Scholar 

  32. Mizohata, S.: On the Cauchy problem. Notes and Reports in Math. in Science and Engineering. Science Press & Academic Press 3, 1985

  33. Poppenberg, M.: On the local wellposedness for quasilinear Schrödinger equations in arbitrary space dimension. J. Differ. Equations 172, 83–115 (2001)

    Article  MATH  Google Scholar 

  34. Poppenberg, M.: Smooth solutions for a class of fully nonlinear Schrödinger type equations. Nonlinear Anal., Theory Methods Appl. 45, 723–741 (2001)

    Google Scholar 

  35. Rolvung, C.: Non-isotropic Schrödinger equations. PhD. dissertation. Chicago: University of Chicago 1998

  36. Sjölin, P.: Regularity of solutions to the Schrödinger equations. Duke Math. J. 55, 699–715 (1987)

    Google Scholar 

  37. Sulem, P.L., Sulem, C.: Nonlinear Schrödinger Equations: Self-Focusing and Wave Collapse. New York: Springer 1999

  38. Takeuchi, J.: Le problème de Cauchy pour certaines equations aux derivées partielles du type de Schrödinger symétrisations indépendendantes du temps. C. R. Acad. Sci. Paris, Sér. I, Math. t315, 1055–1058 (1992)

  39. Vega, L.: The Schrödinger equation: pointwise convergence to the initial data. Proc. Am. Math. Soc. 102, 874–878 (1998)

    MATH  Google Scholar 

  40. Zakharov, V. E., Schulman, E. I.: Degenerated dispersion laws, motion invariant and kinetic equations. Physica D 1, 185–250 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Ponce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenig, C., Ponce, G. & Vega, L. The Cauchy problem for quasi-linear Schrödinger equations. Invent. math. 158, 343–388 (2004). https://doi.org/10.1007/s00222-004-0373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-004-0373-4

Keywords

Navigation