Skip to main content
Log in

Symbolic extensions and smooth dynamical systems

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let f:XX be a homeomorphism of the compact metric space X. A symbolic extension of (f,X) is a subshift on a finite alphabet (g,Y) which has f as a topological factor. We show that a generic C1 non-hyperbolic (i.e., non-Anosov) area preserving diffeomorphism of a compact surface has no symbolic extensions. For r>1, we exhibit a residual subset \(\mathcal{R}\) of an open set \(\mathcal{U}\) of Cr diffeomorphisms of a compact surface such that if \(f\in\mathcal{R}\), then any possible symbolic extension has topological entropy strictly larger than that of f. These results complement the known fact that any C diffeomorphism has symbolic extensions with the same entropy. We also show that Cr generically on surfaces, homoclinic closures which contain tangencies of stable and unstable manifolds have Hausdorff dimension two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lect. Notes Math., vol. 470. Springer 1975

  2. Boyle, M., Downarowicz, T.: The entropy theory of symbolic extensions. Invent. Math. 156, 119–161 (2004)

    Article  Google Scholar 

  3. Boyle, M., Fiebig, D., Fiebig, U.: Residual entropy, conditional entropy, and subshift covers. Forum Math. 14, 713–757 (2002)

    Google Scholar 

  4. Buzzi, J.: Intrinsic ergodicity for smooth interval map. Isr. J. Math. 100, 125–161 (1997)

    Google Scholar 

  5. Denker, M., Grillenberger, C., Sigmund, K.: Ergodic Theory on Compact Spaces. Lect. Notes Math., vol. 527. Springer 1976

  6. Downarowicz, T.: Entropy structure. To appear in J. Anal.

  7. Downarowicz, T.: Entropy of a symbolic extension of a totally disconnected dynamical system. Ergodic Theory Dyn. Syst. 21, 1051–1070 (2001)

    Article  Google Scholar 

  8. Downarowicz, T., Serafin, J.: Fiber entropy and conditional variational principles in compact non-metrizable spaces. Fundam. Math. 172, 217–247 (2002)

    Google Scholar 

  9. Franke, J., Selgrade, J.: Hyperbolicity and cycles. Trans. Am. Math. Soc. 245, 252–262 (1978)

    Google Scholar 

  10. Gonchenko, S., Shilnikov, L., Turaev, D.: On models with non-rough poincare homoclinic curves. Physica D 62, 1–14 (1993)

    Google Scholar 

  11. Gromov, M.: Entropy, Homology, and Semialgebraic Geometry (after yomdin). Astérisque 146/147, 225–240 (1987)

    Google Scholar 

  12. Hasselblatt, B., Katok, A.: Introduction to the Modern Theory of Dynamical Systems, vol. 54 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press 1995

  13. Hirsch, M., Pugh, C.: Stable manifolds and hyperbolic sets. Proc. Am. Math. Soc. 14 (1970)

  14. Hirsch, M.W.: Differential Topology. Springer 1988

  15. Kaloshin, V.: Generic diffeomorphisms with superexponential growth of number of periodic orbits. Commun. Math. Phys. 211, 253–271 (2000)

    Article  Google Scholar 

  16. Katok, A.: Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math., Inst. Hautes. Étud. Sci. 51, 137–173 (1980)

    Google Scholar 

  17. Lindenstrauss, E.: Mean dimension, small entropy factors, and an embedding theorem. Publ. Math., Inst. Hautes. Étud. Sci. 89, 227–262 (1999)

    Google Scholar 

  18. Lindenstrauss, E., Weiss, B.: Mean topological dimension. Isr. J. Math. 115, 1–24 (2000)

    Google Scholar 

  19. Manning, A., McCluskey, H.: Hausdorff dimension for horseshoes. Ergodic Theory Dyn. Syst. 3, 251–261 (1983)

    Google Scholar 

  20. Misiurewicz, M.: Diffeomorphism without any measure of maximal entropy. Bull. Acad. Pol. Sci. 21, 903–910 (1973)

    Google Scholar 

  21. Misiurewicz, M.: Topological conditional entropy. Stud. Math. 55, 175–200 (1976)

    Google Scholar 

  22. Moser, J.: Stable and Random Motions in Dynamical Systems. Annals of Math. Studies. Princeton University Press (1973)

  23. Newhouse, S.: Hyperbolic limit sets. Trans. Am. Math. Soc. 167, 125–150 (1972)

    Google Scholar 

  24. Newhouse, S.: Quasi-elliptic periodic points in conservative dynamical systems. Am. J. Math. 99, 1061–1087 (1977)

    Google Scholar 

  25. Newhouse, S.: Topological entropy and Hausdorff dimension for area preserving diffeomorphisms of surfaces. Astérisque 51, 323–334 (1978)

    Google Scholar 

  26. Newhouse, S.: The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. Publ. Math., Inst. Hautes. Étud. Sci. 50, 101–151 (1979)

    Google Scholar 

  27. Newhouse, S.: Lectures on dynamical systems. In: Coates, J., Helgason, S., eds., Dynamical Systems, CIME Lectures, Bressanone, Italy, June 1978, vol. 8 of Progress in Mathematics, pp. 1–114. Birkhäuser 1980

  28. Newhouse, S.: Generic properties of conservative systems. In: G. Iooss, R.H.G. Helleman, R., Stora, eds., Chaotic behavior of deterministic systems, vol. XXXVI of Les Houches, pp. 443–451. North-Holland (1981)

  29. Newhouse, S.: Entropy and volume. Ergodic Theory Dyn. Syst. 8, 283–299 (1988)

    Google Scholar 

  30. Newhouse, S.: Cone-fields, Domination, and Hyperbolicity. In: M. Brin, B. Hasselblatt, Y. Pesin, eds., Modern Dynamical Systems and Applications, pp. 419–432. Cambridge University Press 2004

  31. Newhouse, S., Palis, J.: Bifurcations of Morse-Smale dynamical systems. In: M.M. Peixoto, ed., Dynamical Systems: Proc. Symp. Bahia, Brazil, July 26–Aug. 14, 1971, pp. 303–366. Academic Press 1973

  32. Newhouse, S., Palis, J.: Cycles and bifurcation theory. Astérisque 31, 43–141 (1976)

    Google Scholar 

  33. Palis, J., Takens, F.: Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, vol. 35 of Cambridge Studies in Advanced Mathematics. Cambridge University Press 1993

  34. Palis, J., Viana, M.: Continuity of Hausdorff dimension and limit capacity for horseshoes. Dynamical Systems. Lect. Notes Math., vol. 1331, pp. 150–160. Springer 1988

  35. Pujals, E., Samborino, M.: Homoclinic tangencies and hyperbolicity for surface diffeomorphisms. Ann. Math. 151, 962–1023 (2000)

    Google Scholar 

  36. Robinson, C.: Homoclinic bifurcation to infinitely many sinks. Commun. Math. Phys. 90, 433–459 (1983)

    Article  Google Scholar 

  37. Robinson, C.: Dynamical Systems, Stability, Symbolic Dynamics, and Chaos, second ed. Studies in Advanced Mathematics. CRC Press 1999

  38. Sigmund, K.: Generic properties of invariant measures for Axiom-A-diffeomorphisms. Invent. Math. 11, 99–109 (1970)

    Article  Google Scholar 

  39. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Google Scholar 

  40. Yomdin, Y.: Ck-resolution of semialgebraic mappings. addendum to volume growth and entropy. Isr. J. Math. 57, 301–317 (1987)

    Google Scholar 

  41. Yomdin, Y.: Volume growth and entropy. Isr. J. Math. 57, 285–300 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon Newhouse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downarowicz, T., Newhouse, S. Symbolic extensions and smooth dynamical systems. Invent. math. 160, 453–499 (2005). https://doi.org/10.1007/s00222-004-0413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-004-0413-0

Keywords

Navigation