Skip to main content
Log in

The homogeneous spectrum problem in ergodic theory

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that for any n≥2 there exists an ergodic measure-preserving transformation with homogeneous spectrum of multiplicity n in the orthogonal complement of the constant functions. This gives a complete solution of Rokhlin’s problem on homogeneous spectrum in ergodic theory. The transformations we provide belong to the class of finite rank transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ageev, O.: On ergodic transformations with homogeneous spectrum. J. Dyn. Control Syst. 5, 149–152 (1999)

    Article  Google Scholar 

  2. Ageev, O.: On the multiplicity function of generic group extensions with continuous spectrum. Ergodic Theory Dyn. Syst. 21, 321–338 (2001)

    Article  Google Scholar 

  3. Ageev, O.: Dynamical systems (spectral theory). Preprint, available at www.mpim-bonn.mpg.de

  4. Ageev, O.: Dynamical systems with a Lebesgue component of even multiplicity in the spectrum. Mat. Sb. 64, 305–317 (1989)

    Google Scholar 

  5. Bunimovich, L.A., Dani, S.G., Dobrushin, R.L., Jakobson, M.V., Kornfeld, I.P., Maslova, N.B., Pesin, Ya.B., Sinai, Ya.G., Smillie, J., Sukhov, Yu.M., Vershik, A.M.: Dynamical systems, ergodic theory and applications. Berlin: Springer 2000

  6. Chacon, R.V.: Approximation and spectral multiplicity. Lect. Notes Math., vol. 160, pp. 18–27. Springer 1970

  7. Chacon, R.V., Schwartzbauer, T.: Commuting point transformations. Z. Wahr. Verw. Geb. 11, 277–287 (1969)

    Article  Google Scholar 

  8. Cornfel’d, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic Theory. Springer 1980

  9. Goodson, G.R.: Conjugacies between ergodic transformations and their inverses. Colloq. Math. 84, 185–193 (2000)

    Google Scholar 

  10. Goodson, G.R.: A survey of recent results in the spectral theory of ergodic dynamical systems. J. Dyn. Control Syst. 5, 173–226 (1999)

    Article  Google Scholar 

  11. Goodson, G.R., Lemanczyk, M.: Transformations conjugate to their inverses have even essential values. Proc. Am. Math. Soc. 124, 2703–2710 (1996)

    Article  Google Scholar 

  12. Glasner, E., King, J.L.: A zero-one law for dynamical properties. Topol. Dyn. Appl. 215, 231–242 (1998)

    Google Scholar 

  13. Halmos, P.R.: Lectures on ergodic theory. N.Y.: Chelsea Publ. Comp. 1956

  14. del Junco, A., Lemańczyk, M.: Generic spectral properties of measure-preserving maps and applications. Proc. Am. Math. Soc. 115, 725–736 (1992)

    Google Scholar 

  15. Katok, A.B.: Constructions in ergodic theory. Unpublished lecture notes

  16. Katok, A., Sinai, J., Stepin, A.: The theory of dynamical systems and general transformation groups with invariant measure. In: Mathematical analysis, vol. 13 (russian), pp. 129–262 (errata insert). Moscow: Akad. Nauk SSSR VINITI 1975

  17. Kirillov, A.A.: Elements of the theory of representations. Springer 1976

  18. Kwiatkowski, J., Lemańczyk, M.: On the multiplicity function of ergodic group extensions II. Studia Math. 116, 207–214 (1995)

    Google Scholar 

  19. Oceledec, V.I.: The spectrum of ergodic automorphisms (russian). Dokl. Akad. Nauk SSSR 168, 776–779 (1966)

    Google Scholar 

  20. Robinson Jr., E.: Ergodic measure preserving transformations with arbitrary finite spectral multiplicity. Invent. Math. 72, 299–314 (1983)

    Google Scholar 

  21. Rudolph, D.J., Weiss, B.: Entropy and mixing for amenable group actions. Ann. Math. 151, 1119–1150 (2000)

    Google Scholar 

  22. Ryzhikov, V.V.: Transformations having homogeneous spectra. J. Dyn. Control Syst. 5, 145–148 (1999)

    Article  Google Scholar 

  23. Ryzhikov, V.V.: On the ranks of an ergodic automorphism T×T (russian). Funkts. Anal. Prilozh. 35, 84–87 (2001). Translation in Funct. Anal. Appl. 35, 151–153 (2001)

    Google Scholar 

  24. Series, C.: The Rohlin tower theorem and hyperfiniteness for actions of continuous groups. Isr. J. Math. 30, 99–122 (1978)

    Google Scholar 

  25. Stepin, A.M.: Applications of periodic approximations for dynamical systems to spectral theory (russian). Ph.D. Thesis, Moscow University 1968

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Ageev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ageev, O. The homogeneous spectrum problem in ergodic theory. Invent. math. 160, 417–446 (2005). https://doi.org/10.1007/s00222-004-0422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-004-0422-z

Keywords

Navigation