Skip to main content
Log in

Multiple recurrence and nilsequences

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Aiming at a simultaneous extension of Khintchine’s and Furstenberg’s Recurrence theorems, we address the question if for a measure preserving system \((X,\mathcal{X},\mu,T)\) and a set \(A\in\mathcal{X}\) of positive measure, the set of integers n such that \(\mu(A{\cap} T^{n}A{\cap} T^{2n}A{\cap} \ldots{\cap} T^{kn}A)>\mu(A)^{k+1}-\epsilon\) is syndetic. The size of this set, surprisingly enough, depends on the length (k+1) of the arithmetic progression under consideration. In an ergodic system, for k=2 and k=3, this set is syndetic, while for k≥4 it is not. The main tool is a decomposition result for the multicorrelation sequence \(\int{f(x)f(T^{n}x)f(T^{2n}x){\ldots} f(T^{kn}x) \,d\mu(x)}\), where k and n are positive integers and f is a bounded measurable function. We also derive combinatorial consequences of these results, for example showing that for a set of integers E with upper Banach density d*(E)>0 and for all ε>0, the set

$$\big\{n\in\mathbb{Z}{\colon} d^*\big(E\cap(E+n)\cap(E+2n)\cap(E+3n)\big) > d^*(E)^4-\epsilon\big\}$$

is syndetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander, L., Green, L., Hahn, F.: Flows on homogeneous spaces. Ann. Math. Stud. 53 Princeton: Princeton Univ. Press 1963

  2. Behrend, F.A.: On sets of integers which contain no three in arithmetic progression. Proc. Natl. Acad. Sci. 23, 331–332 (1946)

    Google Scholar 

  3. Bergelson, V.: Weakly mixing PET. Ergodic Theory Dyn. Syst. 7, 337–349 (1987)

    Google Scholar 

  4. Furstenberg, H.: Strict ergodicity and transformation of the torus. Am. J. Math. 83, 573–601 (1961)

    Google Scholar 

  5. Furstenberg, H.: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31, 204–256 (1977)

    Google Scholar 

  6. Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton: Princeton Univ. Press (1981)

  7. Host, B., Kra, B.: Nonconventional ergodic averages and nilmanifolds. To appear in Ann. Math. Available at http://www.math.psu.edu/kra (2002)

  8. Khintchine, A.Y.: Eine Verschärfung des Poincaréschen “Wiederkehr-Satzes”. Compos. Math. 1, 177–179 (1934)

    Google Scholar 

  9. Leibman, A.: Polynomial sequences in groups. J. Algebra 201, 189–206 (1998)

    Google Scholar 

  10. Leibman, A.: Pointwise convergence of ergodic averages for polynomial sequences of rotations of a nilmanifold. To appear in Ergodic Theory Dyn. Syst. Available at http://www.math.ohio-state.edu/ leibman/preprints (2002)

  11. Lesigne, E.: Sur une nil-variété, les parties minimales associées à une translation sont uniquement ergodiques. Ergodic Theory Dyn. Syst. 11, 379–391 (1991)

    Google Scholar 

  12. Malcev, A.: On a class of homogeneous spaces. Am. Math. Soc. Transl. 39 (1951)

  13. Parry, W.: Ergodic properties of affine transformations and flows on nilmanifolds. Am. J. Math. 91, 757–771 (1969)

    Google Scholar 

  14. Parry, W.: Dynamical systems on nilmanifolds. Bull. Lond. Math. Soc. 2, 37–40 (1970)

    Google Scholar 

  15. Petresco, J.: Sur les commutateurs. Math. Z. 61, 348–356 (1954)

    Google Scholar 

  16. Rudolph, D.J.: Eigenfunctions of T×S and the Conze-Lesigne algebra. Ergodic Theory and its Connections with Harmonic Analysis, ed. by K. Petersen and I. Salama. New York: Cambridge University Press. 369–432 (1995)

  17. Szemerédi, E.: On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27, 199–245 (1975)

    Google Scholar 

  18. Ziegler, T.: A non-conventional ergodic theorem for a nilsystem. To appear in Ergodic Theory Dyn. Syst. Available at http://www.arxiv.org, math.DS/0204058 v1 (2002)

  19. Ziegler, T.: Universal characteristic factors and Furstenberg averages. Preprint. Available at http://www.arxiv.org/abs/math.DS/0403212 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vitaly Bergelson, Bernard Host, Bryna Kra or Imre Ruzsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergelson, V., Host, B., Kra, B. et al. Multiple recurrence and nilsequences. Invent. math. 160, 261–303 (2005). https://doi.org/10.1007/s00222-004-0428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-004-0428-6

Keywords

Navigation