Skip to main content
Log in

Quadratic forms on graphs

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We introduce a new graph parameter, called the Grothendieck constant of a graph G=(V,E), which is defined as the least constant K such that for every A:E→ℝ,

$$\sup_{f:V\to{S}^{|V|-1}}\sum_{\{u,v\}\in{E}} A(u,v)\cdot\langle{f(u),f(v)}\rangle\le{K}\sup_{\varphi:V\to\{-1,+1\}}\sum_{\{u,v\}\in{E}}A(u,v)\cdot\varphi(u)\varphi(v).$$

The classical Grothendieck inequality corresponds to the case of bipartite graphs, but the case of general graphs is shown to have various algorithmic applications. Indeed, our work is motivated by the algorithmic problem of maximizing the quadratic form ∑{u,v}∈E A(u,v)ϕ(u)ϕ(v) over all ϕ:V→{-1,1}, which arises in the study of correlation clustering and in the investigation of the spin glass model. We give upper and lower estimates for the integrality gap of this program. We show that the integrality gap is \(O(\log\vartheta(\overline{G}))\), where \(\vartheta(\overline{G})\) is the Lovász Theta Function of the complement of G, which is always smaller than the chromatic number of G. This yields an efficient constant factor approximation algorithm for the above maximization problem for a wide range of graphs G. We also show that the maximum possible integrality gap is always at least Ω(log ω(G)), where ω(G) is the clique number of G. In particular it follows that the maximum possible integrality gap for the complete graph on n vertices with no loops is Θ(logn). More generally, the maximum possible integrality gap for any perfect graph with chromatic number n is Θ(logn). The lower bound for the complete graph improves a result of Kashin and Szarek on Gram matrices of uniformly bounded functions, and settles a problem of Megretski and of Charikar and Wirth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N.: Explicit Ramsey graphs and orthonormal labelings. Electron. J. Comb. 1, R12 (1994)

  2. Alon, N.: Covering a hypergraph of subgraphs. Discrete Math. 257, 249–254 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Naor, A.: Approximating the Cut-Norm via Grothendieck’s Inequality. Proc. of the 36th ACM STOC, pp. 72–80, 2004

  4. Alon, N., Gutin, G., Krivelevich, M.: Algorithms with large domination ratio. J. Algorithms 50, 118–131 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alon, N., Orlitsky, A.: Repeated communication and Ramsey graphs: IEEE Trans. Inf. Theory 41, 1276–1289 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bansal, N., Blum, A., Chowla, S.: Correlation Clustering. Proc. of the 43 IEEE FOCS, pp. 238–247, 2002

  7. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A, Math. Gen. 15, 3241–3253 (1982)

    Article  MathSciNet  Google Scholar 

  8. Bonamie, A.: Etude de coefficients Fourier des fonctiones de L p(G). Ann. Inst. Fourier 20, 335–402 (1970)

    Google Scholar 

  9. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. Proc. of the 44 IEEE FOCS, pp. 524–533, 2003

  10. Charikar, M., Wirth, A.: Maximizing quadratic programs: extending Grothendieck’s Inequality, pp. 54–60. FOCS 2004

  11. Ding, G., Seymour, P.D., Winkler, P.: Bounding the vertex cover number of a hypergraph. Combinatorica 14, 23–34 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Frieze, A.M., Kannan, R.: Quick Approximation to matrices and applications. Combinatorica 19, 175–200 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1981)

    MATH  MathSciNet  Google Scholar 

  14. Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. Sao Paolo 8, 1–79 (1953)

    MathSciNet  Google Scholar 

  15. Johnson, W.B., Lindenstrauss, J.: Basic concepts in the geometry of Banach spaces. Handbook of the geometry of Banach spaces, vol. I, pp. 1–84. Amsterdam: North-Holland 2001

  16. Juhász, F.: The asymptotic behaviour of Lovász’ θ function for random graphs. Combinatorica 2, 153–155 (1982)

    MATH  MathSciNet  Google Scholar 

  17. Kim, S.-J., Kostochka, A., Nakprasit, K.: On the Chromatic Number of Intersection Graphs of Convex Sets in the Plane. Electron. J. Comb. 11, R52 (2004)

  18. Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite programming. J. ACM 45, 246–265 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kashin, B.S., Szarek, S.J.: On the Gram Matrices of Systems of Uniformly Bounded Functions. Proc. Steklov Inst. Math., vol. 243, pp. 227–233, 2003

  20. Krivine, J.: Sur la constante de Grothendieck. C. R. Acad. Sci., Paris, Sér. A-B 284, 445–446 (1977)

    MATH  MathSciNet  Google Scholar 

  21. Lindenstrauss, J., Pełczyński, A.: Absolutely summing operators in L p spaces and their applications. Studia Math. 29, 275–326 (1968)

    MATH  MathSciNet  Google Scholar 

  22. Lovász, L.: Kneser’s conjecture, chromatic number and homotopy, J. Comb. Theory 25, 319–324 (1978)

    Article  MATH  Google Scholar 

  23. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7 (1979)

    Article  MATH  Google Scholar 

  24. Lovász, L., Plummer, M.D.: Matching Theory. Amsterdam: North Holland 1986

  25. Megretski, A.: Relaxation of Quadratic Programs in Operator Theory and System Analysis. In: Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), pp. 365–392. Basel: Birkhäuser 2001

  26. Nemirovski, A., Roos, C., Terlaky, T.: On Maximization of Quadratic Form over Intersection of Ellipsoids with Common Center. Math. Program. 86, 463–473 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Talagrand, M.: Spin glasses: a challenge for mathematicians. Cavity and mean field models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 46. Berlin: Springer 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Noga Alon, Konstantin Makarychev, Yury Makarychev or Assaf Naor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alon, N., Makarychev, K., Makarychev, Y. et al. Quadratic forms on graphs. Invent. math. 163, 499–522 (2006). https://doi.org/10.1007/s00222-005-0465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-005-0465-9

Keywords

Navigation