Skip to main content
Log in

Murphy’s law in algebraic geometry: Badly-behaved deformation spaces

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We consider the question: “How bad can the deformation space of an object be?” The answer seems to be: “Unless there is some a priori reason otherwise, the deformation space may be as bad as possible.” We show this for a number of important moduli spaces.

More precisely, every singularity of finite type over ℤ (up to smooth parameters) appears on: the Hilbert scheme of curves in projective space; and the moduli spaces of smooth projective general-type surfaces (or higher-dimensional varieties), plane curves with nodes and cusps, stable sheaves, isolated threefold singularities, and more. The objects themselves are not pathological, and are in fact as nice as can be: the curves are smooth, the surfaces are automorphism-free and have very ample canonical bundle, the stable sheaves are torsion-free of rank 1, the singularities are normal and Cohen-Macaulay, etc. This justifies Mumford’s philosophy that even moduli spaces of well-behaved objects should be arbitrarily bad unless there is an a priori reason otherwise.

Thus one can construct a smooth curve in projective space whose deformation space has any given number of components, each with any given singularity type, with any given non-reduced behavior. Similarly one can give a surface over \(\mathbb{F}_{p}\) that lifts to ℤ/p 7 but not ℤ/p 8. (Of course the results hold in the holomorphic category as well.)

It is usually difficult to compute deformation spaces directly from obstruction theories. We circumvent this by relating them to more tractable deformation spaces via smooth morphisms. The essential starting point is Mnëv’s universality theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, M.: Versal deformations and algebraic stacks. Invent. Math. 27, 165–189 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burns Jr., D.M., Wahl, J.M.: Local contributions to global deformations of surfaces. Invent. Math. 26, 67–88 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  3. Catanese, F.: On the moduli spaces of surfaces of general type. J. Differ. Geom. 19, 483–515 (1984)

    MATH  MathSciNet  Google Scholar 

  4. Catanese, F.: Moduli of algebraic surfaces. In: Theory of moduli (Montecatini Terme, 1985). Lect. Notes Math., vol. 1337, pp. 1–83. Berlin: Springer 1988

  5. Catanese, F.: Everywhere nonreduced moduli space. Invent. Math. 98, 293–310 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Catanese, F. Wajnryb, B.: Diffeomorphism of simply connected algebraic surfaces. Preprint 2004, math.AG/0405299v1

  7. Cutkosky, S.D., Ha, H.T.: Arithmetic Macaulayfication of projective schemes. J. Pure Appl. Algebra 201, 49–61 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Easton, R.: Surfaces violating Bogomolov-Miyaoka-Yau in positive characteristic. Preprint 2005, math.AG/0511455, submitted for publication

  9. Ellingsrud, G.: Sur le schéma de Hilbert des variétés de codimension 2 dans ℙe à cône de Cohen-Macaulay. Ann. Sci. Éc. Norm. Supér., IV. Sér. 8, 423–431 (1975)

    MATH  MathSciNet  Google Scholar 

  10. Eisenbud, D.: Commutative Algebra with a View toward Algebraic Geometry. Grad. Texts Math., vol. 150. New York: Springer 1995

  11. Ellia, P.: D’autres composantes non reduites de Hilbℙ3. Math. Ann. 27, 433–446 (1987)

    Article  MathSciNet  Google Scholar 

  12. Ellia, P., Hartshorne, R.: Smooth specializations of space curves: Questions and examples. In: Commutative algebra and algebraic geometry (Ferrara). Lect. Notes Pure Appl. Math., vol. 206, pp. 53–79. New York: Dekker 1999

  13. Ellia, P., Hirschowitz, A., Mezzetti, E.: On the number of irreducible components of the Hilbert scheme of smooth space curves. Int. J. Math. 3, 799–807 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fantechi, B., Pardini, R.: Automorphisms and moduli spaces of varieties with ample canonical class via deformations of abelian covers. Commun. Algebra 25, 1413–1441 (1997)

    MATH  MathSciNet  Google Scholar 

  15. Fantechi, B., Pardini, R.: On the Hilbert scheme of curves in higher-dimensional projective space. Manuscr. Math. 90, 1–15 (1996)

    MATH  MathSciNet  Google Scholar 

  16. Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology. Proc. Sympos. Pure Math., vol. 62, Part 2. Providence, RI: Am. Math. Soc. 1997

  17. Gieseker, D.: On the moduli of vector bundles on an algebraic surface. Ann. Math. 106, 45–60 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Goto, S., Watanabe, K.: On graded rings, I. J. Math. Soc. Japan 30, 179–213 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Grothendieck, A.: Fondements de la géométrie algébrique: Technique de descente et théorèmes d’existence en géométrie algébrique IV, Les schémas de Hilbert (t. 13, 1960/61, no. 221). In: Extraits du Séminaire Bourbaki, 1957–1962. Paris: Secrétariat mathématique 1962

  20. Gruson, L., Peskine, C.: Genre des courbes de l’espace projectif II, Ann. Sci. Éc. Norm. Supér., IV. Sér. 15 401–418 (1982)

    Google Scholar 

  21. Harris, J., Morrison, I.: Moduli of Curves. Grad. Texts Math., vol. 187. New York: Springer 1998

  22. Hartshorne, R.: Algebraic Geometry. Grad. Texts Math., vol. 52. New York: Springer 1977

  23. Hartshorne, R., Ogus, A.: On the factoriality of local rings of small embedding codimension. Commun. Algebra 1, 415–437 (1974)

    MATH  MathSciNet  Google Scholar 

  24. Horikawa, E.: Surfaces of general type with small c 1 2, III. Invent. Math. 47, 209–248 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kas, A.: On obstructions to deformations of complex analytic surfaces. Proc. Natl. Acad. Sci. USA 58, 402–404 (1967)

    MATH  MathSciNet  Google Scholar 

  26. Kleppe, J.O.: Nonreduced components of the Hilbert scheme of smooth space curves. In: Space curves (Rocca di Papa, 1985). Lect. Notes Math., vol. 1266, pp. 181–207. Berlin: Springer 1987

  27. Kodaira, K.: Complex Manifolds and Deformation of Complex Structures. New York: Springer 1986

  28. Kollár, J.: Projectivity of complete moduli. J. Differ. Geom. 39, 235–268 (1990)

    Google Scholar 

  29. Kollár, J.: Rational Curves on Algebraic Varieties. Berlin: Springer 1996

  30. Kollár, J.: Quotient spaces modulo algebraic groups. Ann. Math. (2) 145, 33–79 (1997)

    Google Scholar 

  31. Kollár, J., Mori, S.: Classification of three-dimensional flips. J. Am. Math. Soc. 5, 533–703 (1992)

    Article  MATH  Google Scholar 

  32. Lafforgue, L.: Chirurgie des Grassmanniennes. CRM Monograph Series, vol. 19. Am. Math. Soc. 2003

  33. Lang, W.E.: Examples of surfaces of general type with vector fields. In: Arithmetic and Geometry, vol. II, pp. 167–173, ed. by M. Artin, J. Tate. Birkhäuser 1983

  34. Lax, R.F.: MathReview to [HM], MR1631825 (99g:14031)

  35. Luengo, I.: On the existence of complete families of projective plane curves, which are obstructed. Lond. J. Math. Soc. 36, 33–43 (1987)

    MATH  MathSciNet  Google Scholar 

  36. Manetti, M.: Degenerations of algebraic surfaces and applications to moduli problems. Thesis. Pisa: Scuola Normale Superiore 1995

  37. Manetti, M.: On the moduli space of diffeomorphic algebraic surfaces. Invent. Math. 143, 29–76 (2001), math.AG/9802088

    Article  MATH  MathSciNet  Google Scholar 

  38. Maruyama, M.: Moduli of stable sheaves, I. J. Math. Kyoto Univ. 17, 91–126 (1977)

    MATH  MathSciNet  Google Scholar 

  39. Martin-Deschamps, M., Perrin, D.: Le schéma de Hilbert des courbes gauches localement Cohen-Macaulay n’est (presque) jamais réduit. Ann. Sci. Éc. Norm. Supér., IV. Sér. 29, 757–785 (1996)

    MATH  MathSciNet  Google Scholar 

  40. Miranda, R.: On canonical surfaces of general type with K 2=3χ-10. Math. Z. 198, 83–93 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  41. Mnëv, N.: Varieties of combinatorial types of projective configurations and convex polyhedra. Dokl. Akad. Nauk SSSR 283, 1312–1314 (1985)

    MATH  MathSciNet  Google Scholar 

  42. Mnëv, N.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Topology and geometry – Rohlin seminar. Lect. Notes Math., vol. 1346, pp. 527–543. Berlin: Springer 1988

  43. Mohan Kumar, N., Peterson, C., Rao, A.P.: Hilbert scheme components in characteristic 2. Commun. Algebra 28, 5735–5744 (2000)

    MATH  Google Scholar 

  44. Mumford, D.: Further pathologies in algebraic geometry. Am. J. Math. 84, 642–648 (1962)

    MATH  MathSciNet  Google Scholar 

  45. Norman, P., Oort, F.: Moduli of abelian varieties. Ann. Math. (2) 112, 413–439 (1980)

    Google Scholar 

  46. Pardini, R.: Abelian covers of algebraic varieties. J. Reine Angew. Math. 417, 191–213 (1991)

    MATH  MathSciNet  Google Scholar 

  47. Ran, Z.: Deformations of maps. In: Algebraic Curves and Projective Geometry. Lect. Notes Math., vol. 1389, pp. 246–253. Springer 1989

  48. Raynaud, M.: Contre-exemple au “Vanishing Theorem” en caractéristique p>0. In: C.P. Ramanujam – A tribute, pp. 273–278. Springer 1978

  49. Schlessinger, M.: On rigid singularities. In: Complex analysis, 1972, Vol. I: Geometry of singularities. Rice Univ. Stud. 59, 113–117 (1973)

    MathSciNet  Google Scholar 

  50. Serre, J.-P.: Exemples de variétés projectives en caractéristique p non relevable en caractéristique zero. Proc. Natl. Acad. Sci. 47, 108–109 (1961)

    MATH  MathSciNet  Google Scholar 

  51. Severi, F.: Vorlesungen über algebraische Geometrie. Leipzig: Teubner 1921

  52. Simpson, C.: Moduli of representations of the fundamental group of a smooth projective variety I. Publ. Math., Inst. Hautes Étud. Sci. 79, 47–129 (1997)

    MathSciNet  Google Scholar 

  53. Vakil, R.: Murphy’s law in algebraic geometry: Badly-behaved deformation spaces (first version). Preprint 2004, math.AG/0411469v1

  54. Vakil, R., Zinger, A.: A desingularization of the main component of the moduli space of genus one stable maps into ℙn. In preparation

  55. Vershik, A.M.: Topology of the convex polytopes’ manifolds, the manifold of the projective configurations of a given combinatorial type and representations of lattices. In: Topology and geometry – Rohlin seminar. Lect. Notes Math., vol. 1346, pp. 557–581. Berlin: Springer 1988

  56. Viehweg, E.: Quasi-projective Moduli for Polarized Manifolds. Berlin: Springer 1995

  57. Wahl, J.: Deformations of plane curves with nodes and cusps. Am. J. Math. 96, 529–577 (1974)

    MATH  MathSciNet  Google Scholar 

  58. Wahl, J.: Equisingular deformaitons of normal surface singularities I. Ann. Math. (2) 104, 325–356 (1976)

    Google Scholar 

  59. Wahl, J.: MathReview to [Lu], MR897672 (88f:14028)

  60. Zariski, O.: Algebraic Surfaces. 2nd suppl. edn. Berlin: Springer 1971

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Vakil.

Additional information

Mathematics Subject Classification (2000)

14B12, 14C05, 14J10, 14H50, 14B07, 14N20, 14D22, 14B05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vakil, R. Murphy’s law in algebraic geometry: Badly-behaved deformation spaces. Invent. math. 164, 569–590 (2006). https://doi.org/10.1007/s00222-005-0481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-005-0481-9

Keywords

Navigation