Skip to main content
Log in

Universal lattices and property tau

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that the universal lattices – the groups G=SLd(R) where R=ℤ[x 1,...,x k], have property τ for d≥3. This provides the first example of linear groups with τ which do not come from arithmetic groups. We also give a lower bound for the τ-constant with respect to the natural generating set of G. Our methods are based on bounded elementary generation of the finite congruence images of G, a generalization of a result by Dennis and Stein on K 2 of some finite commutative rings and a relative property T of \((\mathrm{SL}_2(R)\ltimes R^2, R^2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bass, H.: Algebraic K-theory. New York, Amsterdam: W.A. Benjamin, Inc. 1968

  2. Bass, H., Milnor, J., Serre, J.P.: Solution of the congruence subgroup problem for SLn(n≥3) and Sp2n(n≥2). Publ. Math., Inst. Hautes Étud. Sci. 33, 59–137 (1967)

    Article  Google Scholar 

  3. Carter, D., Keller, G.: Bounded elementary generation of \(\mathrm{SL}_n(\mathcal{O})\). Am. J. Math. 105, 673–687 (1983)

    Article  Google Scholar 

  4. Dennis, R.K., Stein, M.R.: K 2 of radical ideals and semi-local rings revisited. In: Algebraic K-theory, II: “Classical” algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 281–303. Lect. Notes Math., vol. 342. Berlin: Springer 1973

  5. Dennis, R.K., Stein, M.R.: K 2 of discrete valuation rings. Adv. Math. 18, 182–238 (1975)

    Article  Google Scholar 

  6. Dennis, R.K., Vaserstein, L.N.: On a question of M. Newman on the number of commutators. J. Algebra 118, 150–161 (1988)

    Google Scholar 

  7. Gromov, M.: Random walk in random groups. Geom. Funct. Anal. 13, 73–146 (2003)

    Article  MathSciNet  Google Scholar 

  8. Grunewald, F., Mennicke, J., Vaserstein, L.: On the groups SL2(ℤ[x]) and SL2(k[x,y]). Isr. J. Math. 86, 157–193 (1994)

    Article  Google Scholar 

  9. Kassabov, M.: Kazhdan Constants for SLn(ℤ). Int. J. Algebra Comput. 15, 971–995 (2005)

    Article  Google Scholar 

  10. Kassabov, M.: Universal lattices and unbounded rank expanders. Accepted for publication in Invent. Math.

  11. Každan, D.A.: On the connection of the dual space of a group with the structure of its closed subgroups. Funkts. Anal. Prilozh. 1, 71–74 (1967)

    Google Scholar 

  12. Krstic, S., McCool, J.: Presenting GLn(kt〉). J. Pure Appl. Algebra 141, 175–183 (1999)

    Article  MathSciNet  Google Scholar 

  13. Lubotzky, A.: Discrete groups, expanding graphs and invariant measures. Prog. Math., vol. 125. Basel: Birkhäuser 1994

  14. Lubotzky, A., Żuk, A.: On property τ. In preparation

  15. Milnor, J.: Introduction to algebraic K-theory. Princeton, NJ: Princeton University Press 1971

  16. Quillen, D.: Higher algebraic K-theory. I. In: Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85–147. Lect. Notes Math., vol. 341. Berlin: Springer 1973

  17. Shalom, Y.: Bounded generation and Kazhdan’s property (T). Publ. Math., Inst. Hautes Étud. Sci. 90, 145–168 (1999)

    Article  Google Scholar 

  18. Stein, M.R.: Surjective stability in dimension 0 for K 2 and related functors. Trans. Am. Math. Soc. 178, 165–191 (1973)

    Google Scholar 

  19. Suslin, A.A.: The structure of the special linear group over rings of polynomials. Izv. Akad. Nauk SSSR Ser. Mat. 41, 235–252, 477 (1977)

    MathSciNet  Google Scholar 

  20. Vaserstein, L.N.: On the stabilization of the general linear group over a ring. Math. USSR Sb. 8, 383–400 (1969)

    Article  MathSciNet  Google Scholar 

  21. Zariski, O., Samuel, P.: Commutative algebra, vol. II. New York: Springer 1975

  22. Żuk, A.: Property (T) and Kazhdan constants for discrete groups. Geom. Funct. Anal. 13, 643–670 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Kassabov or Nikolay Nikolov.

Additional information

Mathematics Subject Classification (2000)

20F69, 13M05, 19C20, 20G05, 20H05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassabov, M., Nikolov, N. Universal lattices and property tau. Invent. math. 165, 209–224 (2006). https://doi.org/10.1007/s00222-005-0498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-005-0498-0

Keywords

Navigation