Skip to main content
Log in

Stringy K-theory and the Chern character

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We construct two new G-equivariant rings: \(\mathcal{K}(X,G)\), called the stringy K-theory of the G-variety X, and \(\mathcal{H}(X,G)\), called the stringy cohomology of the G-variety X, for any smooth, projective variety X with an action of a finite group G. For a smooth Deligne–Mumford stack \(\mathcal{X}\), we also construct a new ring \(\mathsf{K}_{\mathrm{orb}}(\mathcal{X})\) called the full orbifold K-theory of \(\mathcal{X}\). We show that for a global quotient \(\mathcal{X} = [X/G]\), the ring of G-invariants \(K_{\mathrm{orb}}(\mathcal{X})\) of \(\mathcal{K}(X,G)\) is a subalgebra of \(\mathsf{K}_{\mathrm{orb}}([X/G])\) and is linearly isomorphic to the “orbifold K-theory” of Adem-Ruan [AR] (and hence Atiyah-Segal), but carries a different “quantum” product which respects the natural group grading.

We prove that there is a ring isomorphism \(\mathcal{C}\mathbf{h}:\mathcal{K}(X,G)\to\mathcal{H}(X,G)\), which we call the stringy Chern character. We also show that there is a ring homomorphism \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}:\mathsf{K}_{\mathrm{orb}}(\mathcal{X}) \rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\), which we call the orbifold Chern character, which induces an isomorphism \(Ch_{\mathrm{orb}}:K_{\mathrm{orb}}(\mathcal{X})\rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\) when restricted to the sub-algebra \(K_{\mathrm{orb}}(\mathcal{X})\). Here \(H_{\mathrm{orb}}^\bullet(\mathcal{X})\) is the Chen–Ruan orbifold cohomology. We further show that \(\mathcal{C}\mathbf{h}\) and \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}\) preserve many properties of these algebras and satisfy the Grothendieck–Riemann–Roch theorem with respect to étale maps. All of these results hold both in the algebro-geometric category and in the topological category for equivariant almost complex manifolds.

We further prove that \(\mathcal{H}(X,G)\) is isomorphic to Fantechi and Göttsche’s construction [FG, JKK]. Since our constructions do not use complex curves, stable maps, admissible covers, or moduli spaces, our results greatly simplify the definitions of the Fantechi–Göttsche ring, Chen–Ruan orbifold cohomology, and the Abramovich–Graber–Vistoli orbifold Chow ring.

We conclude by showing that a K-theoretic version of Ruan’s Hyper-Kähler Resolution Conjecture holds for the symmetric product of a complex projective surface with trivial first Chern class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich, D., Graber, T., Vistoli, A.: Algebraic orbifold quantum products. In: Adem, A., Morava, J., Ruan, Y. (eds.) Orbifolds in Mathematics and Physics. Contemp. Math., vol. 310, pp. 1–25. (2002). Am. Math. Soc., Providence, RI (2002). math.AG/0112004

  2. Adem, A., Ruan, Y.: Twisted orbifold K-theory. Commun. Math. Phys. 273(3), 533–56 (2003). math.AT/0107168

    Google Scholar 

  3. Adem, A., Ruan, Y., Zhan, B.: A stringy product on twisted orbifold K-theory. Preprint. math.AT/0605534

  4. Atiyah, M.F., Hirzebruch, F.: The Riemann–Roch theorem for analytic embeddings. Topology 1, 151–166 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  5. Atiyah, M.F., Segal, G.: On equivariant Euler characteristics. J. Geom. Phys. 6, 671–677 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, W., Ruan, Y.: A new cohomology theory for orbifold. Commun. Math. Phys. 248(1), 1–31 (2004). math.AG/0004129

    Google Scholar 

  7. Chen, W., Ruan, Y.: Orbifold Gromov–Witten theory. In: Adem, A., Morava, J., Ruan, Y., (eds.) Orbifolds in Mathematics and Physics. Contemp. Math., vol. 310, pp. 25–85. Am. Math. Soc., Providence, RI (2002). math.AG/0103156

  8. Chen, B., Hu, S.: A deRham model for Chen–Ruan cohomology ring of Abelian orbifolds. Math. Ann. 336(1), 51–71 (2006). math.SG/0408265

    Article  MATH  MathSciNet  Google Scholar 

  9. Dixon, L., Harvey, J.A., Vafa, C., Witten, E.: Strings on Orbifolds. Nucl. Phys. B261, 678 (1985)

    Article  MathSciNet  Google Scholar 

  10. Dolgushev, V., Etingof, P.: Hochschild cohomology of quantized symplectic orbifolds and the Chen–Ruan cohomology. Int. Math. Res. Not. 2005(27), 1657–1688 (2005). math.QA/0410562

    Article  MATH  MathSciNet  Google Scholar 

  11. Edidin, D., Graham, W.: NonAbelian localization in equivariant K-theory and Riemann–Roch for quotients. Adv. Math. 198(2), 547–582 (2005). math.AG/0411213

    Google Scholar 

  12. Fantechi, B., Göttsche, L.: Orbifold cohomology for global quotients. Duke Math. J. 117(2), 197–227 (2003). math.AG/0104207

    Google Scholar 

  13. Farkas, H., Kra, I.: Riemann Surfaces, 2nd edn. Springer, New York (1991)

    Google Scholar 

  14. Frenkel, E., Szczesny, M.: Chiral de Rham complex and orbifolds. Preprint. math.AG/0307181

  15. Fulton, W.: Intersection Theory. Springer, New York (1998)

    MATH  Google Scholar 

  16. Fulton, W., Harris, J.: Representation Theory: a First Course. Springer, New York (1991)

    MATH  Google Scholar 

  17. Fulton, W., Lang, S.: Riemann–Roch Algebra. Springer, New York (1985)

    MATH  Google Scholar 

  18. Goldin, R., Holm, T.S., Knutson, A.: Orbifold cohomology of torus quotients. Preprint. math.SG/0502429

  19. Ginzburg, V., Guillemin, V., Karshon, Y.: Moment maps, cobordisms, and Hamiltonian group actions. Am. Math. Soc., Providence, RI (2002)

    MATH  Google Scholar 

  20. Givental, A.: On the WDVV-equation in quantum K-theory. Mich. Math. J. 48, 295–304 (2000). math.AG/0003158

    Google Scholar 

  21. Jarvis, T., Kaufmann, R., Kimura, T.: Pointed admissible G-covers and G-equivariant cohomological Field Theories. Compos. Math. 141(4), 926–978 (2005). math.AG/0302316

    Google Scholar 

  22. Joshua, R.: Higher Intersection theory for algebraic stacks: I. K-Theory, 27(2), 134–195 (2002)

    Article  MathSciNet  Google Scholar 

  23. Joshua, R.: K-Theory and absolute cohomology for algebraic stacks. K-theory archive #0732. Preprint (2005)

  24. Kaledin, D.: Multiplicative McKay correspondence in the symplectic case. Preprint. math.AG/0311409

  25. Kani, E.: The Galois-module structure of the space of holomorphic differentials of a curve. J. Reine Angew. Math. 367, 187–206 (1986)

    MATH  MathSciNet  Google Scholar 

  26. Karoubi, M.: K-Theory, An Introduction. Springer, Berlin–New York (1978)

  27. Kaufmann, R.: Orbifold Frobenius algebras, cobordisms, and monodromies. In: Adem, A., Morava, J., Ruan, Y. (eds.) Orbifolds in Mathematics and Physics. Contemp. Math., vol. 310, pp. 135–162 (2002)

  28. Kaufmann, R.: Orbifolding Frobenius algebras. Int. J. Math. 14(6), 573–617 (2003). math.AG/0107163

    Google Scholar 

  29. Kaufmann, R.: The algebra of discrete torsion. J. Algebra 282(1), 232–259 (2004). math.AG/0208081

    Google Scholar 

  30. Kaufmann, R.: Discrete torsion, symmetric products and the Hilbert scheme. In: Hertling, C., Marcolli, M. (eds.) Frobenius Manifolds, Quantum Cohomology and Singularities. Aspects Math., vol. E36, Vieweg, Wiesbaden (2004)

  31. Kleiman, S.: Algebraic Cycles and the Weil Conjectures. In: Grothendieck, A., Kuiper, N. (eds.) Dix exposés sur la cohomologie des schémas. North-Holland, Amsterdam (1968)

  32. Lee, Y.P.: Quantum K-theory I: Foundations. Duke Math. J. 121(3), 389–424 (2004). math.AG/0105014

  33. Quillen, D.: Elementary proofs of some results of cobordism theory using Steenrod operations. Adv. Math. 7, 29–56 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ruan, Y.: Stringy orbifolds. In: Adem, A., Morava, J., Ruan, Y. (eds.) Orbifolds in Mathematics and Physics. Contemp. Math., vol. 310, pp. 259–299 (2002)

  35. Berthelot, P., Grothendieck, A., Illusie, L.: Théorie des intersections et théorème de Riemann–Roch. Lect. Notes Math., vol. 225. Springer, Berlin (1971)

    MATH  Google Scholar 

  36. Shanahan, P.: The Atiyah–Singer Index Theorem. Springer, New York (1978)

    MATH  Google Scholar 

  37. Toen, B.: Théorèmes de Riemann–Roch pour les champs de Deligne–Mumford. K-Theory 18(1), 33–76 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. Totaro, B.: The resolution property for schemes and stacks. J. Reine Angew. Math. 577, 1–22 (2004). math.AG/0207210

    MATH  MathSciNet  Google Scholar 

  39. Turaev, V.: Homotopy field theory in dimension 2 and group-algebras. Preprint. math.QA/9910010

  40. Uribe, B.: Orbifold cohomology of the symmetric product. Commun. Anal. Geom. 13(1), 113–128 (2005). math.AT/0109125

    MATH  MathSciNet  Google Scholar 

  41. Vistoli, A.: Higher equivariant K-theory for finite group actions. Duke Math. J. 63(2), 399–419 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  42. Vezzosi, G., Vistoli, A.: Higher algebraic K-theory for actions of diagonalizable groups. Invent. Math. 153(1), 1–44 (2003). math.AG/0107174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler J. Jarvis.

Additional information

Mathematics Subject Classification (2000)

Primary: 14N35, 53D45; Secondary: 19L10, 19L47, 19E08, 55N15, 14A20, 14H10, 14C40

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarvis, T., Kaufmann, R. & Kimura, T. Stringy K-theory and the Chern character. Invent. math. 168, 23–81 (2007). https://doi.org/10.1007/s00222-006-0026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-006-0026-x

Keywords

Navigation