Skip to main content
Log in

Representation theory of \(\mathcal{W}\)-algebras

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We study the representation theory of the \(\mathcal{W}\)-algebra \(\mathcal{W}_k(\bar{\mathfrak{g}})\) associated with a simple Lie algebra \(\bar{\mathfrak{g}}\) at level k. We show that the “-” reduction functor is exact and sends an irreducible module to zero or an irreducible module at any level k∈ℂ. Moreover, we show that the character of each irreducible highest weight representation of \(\mathcal{W}_k(\bar{\mathfrak{g}})\) is completely determined by that of the corresponding irreducible highest weight representation of affine Lie algebra \(\mathfrak{g}\) of \(\bar{\mathfrak{g}}\). As a consequence we complete (for the “-” reduction) the proof of the conjecture of E. Frenkel, V. Kac and M. Wakimoto on the existence and the construction of the modular invariant representations of \(\mathcal{W}\)-algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, T., Buhl, G., Dong, C.: Rationality, regularity, and C 2-cofiniteness. Trans. Amer. Math. Soc. 356(8), 3391–3402 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arakawa, T.: Vanishing of cohomology associated to quantized Drinfeld–Sokolov reduction. Int. Math. Res. Not. 15, 729–767 (2004)

    Article  MathSciNet  Google Scholar 

  3. Arakawa, T.: Representation theory of superconformal algebras and the Kac–Roan–Wakimoto conjecture. Duke Math. J. 130(3), 435–478 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Backelin, E.: Representation of the category \(\mathcal{O}\) in Whittaker categories. Internat. Math. Res. Not. 4, 153–172 (1997)

    Article  MathSciNet  Google Scholar 

  5. Belavin, A., Polyakov, A., Zamolodchikov, A.: Infinite conformal symmetry in two dimensional quantum field theory. Nucl. Phys. B 241(2), 333–380 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: A certain category of \(\mathfrak{g}\)-modules. Funkts. Anal. Pril. 10(2), 1–8 (1976)

    MathSciNet  Google Scholar 

  7. Bershadsky, M., Ooguri, H.: Hidden SL(n) symmetry in conformal field theories. Commun. Math. Phys. 126(1), 49–83 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borcherds, R.E.: Vertex algebras, Kac–Moody algebras, and the Monster. Proc. Nat. Acad. Sci. USA 83(10), 3068–3071 (1986)

    Article  MathSciNet  Google Scholar 

  9. Bouwknegt, P., McCarthy, J., Pilch, K.: The \(\mathcal{W}\) 3 algebra. Lecture Notes in Physics. New Series m: Monographs, vol. 42. Springer, Berlin (1996)

    MATH  Google Scholar 

  10. Bouwknegt, P., Schoutens, K.: \(\mathcal{W}\)-symmetry in conformal field theory. Phys. Rep. 223(4), 183–276 (1993)

    Article  MathSciNet  Google Scholar 

  11. Bouwknegt, P., Schoutens, K. (eds.): \(\mathcal{W}\)-symmetry. Adv. Ser. Math. Phys., vol. 22. World Scientific Publishing Co., Inc., River Edge, NJ (1995)

  12. Brundan, J., Kleshchev, K.: Representations of shifted Yangians and finite W-algebras. math.RT/0508003

  13. Casian, L.: Proof of the Kazhdan–Lusztig conjecture for Kac–Moody algebras (the characters chL ωρ-ρ). Adv. Math. 119(2), 207–281 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. de Boer, J., Tjin, T.: The relation between quantum \(\mathcal{W}\)-algebras and Lie algebras. Commun. Math. Phys. 160(2), 317–332 (1994)

    Article  MATH  Google Scholar 

  15. Deodhar, V.V., Gabber, O., Kac, V.G.: Structure of some categories of representations of infinite-dimensional Lie algebras. Adv. Math. 45(1), 92–116 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fateev, V.A., Lukyanov, S.L.: The models of two-dimensional conformal quantum field theory with Z n symmetry. Int. J. Mod. Phys. A 3(2), 507–520 (1988)

    Article  MathSciNet  Google Scholar 

  17. Fateev, V.A., Zamolodchikov, A.B.: Conformal quantum field theory models in two dimensions having Z 3 symmetry. Nucl. Phys. B 280(4), 644–660 (1987)

    Article  MathSciNet  Google Scholar 

  18. Feigin, B.L.: Semi-infinite homology of Lie, Kac–Moody and Virasoro algebras. Uspekhi Mat. Nauk 39(2), 195–196 (1984)

    MathSciNet  Google Scholar 

  19. Feigin, B.L., Frenkel, E.: Affine Kac–Moody algebras, bosonization and resolutions. Phys. Lett. 19, 307–317 (1990)

    MATH  MathSciNet  Google Scholar 

  20. Feigin, B.L., Frenkel, E.: Duality in \(\mathcal{W}\)-algebras. Int. Math. Res. Not. 1991(6), 75–82 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Feigin, B.L., Frenkel, E.: Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras. Infinite analysis. Part A (Kyoto, 1991) In: Adv. Ser. Math. Phys., vol. 16, pp. 197–215. World Scientific (1992)

  22. Feigin, B.L., Fuchs, D.B.: Skew-symmetric invariant differential operators on the line and Verma modules over the Virasoro algebra. Funkts. Anal. Prilozh. 16(2), 47–63, 96 (1982)

    Google Scholar 

  23. Feigin, B.L., Fuchs, D.B.: Representation of the Virasoro Algebra. In: Adv. Stud. Contemp. Math., vol. 7, pp. 465–554. Gordon and Breach, New York (1990)

  24. Frenkel, E.: \(\mathcal{W}\)-algebras and Langlands–Drinfeld correspondence. In: New Symmetry Principles in Quantum Field Theory (Cargse, 1991). NATO Adv. Sci. Inst. Ser. B Phys., vol. 295, pp. 433–447. Plenum, New York (1992)

  25. Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves. Math. Surv. Monogr., vol. 88. American Mathematical Society, Providence, RI (2004)

    MATH  Google Scholar 

  26. Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc., vol 104(494). Amer. Math. Soc., Providence, RI (1993)

  27. Frenkel, E., Kac, V.G., Wakimoto, M.: Characters and fusion rules for W-algebras via quantized Drinfeld–Sokolov reduction. Commun. Math. Phys. 147(2), 295–328 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster. Pure Appl. Math., vol. 134. Academic Press, Boston, MA (1988)

    MATH  Google Scholar 

  29. Frenkel, I.B., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gan, W.-L., Ginzburg, V.: Quantization of Slodowy slices. Int. Math. Res. Not. 5, 243–255 (2002)

    Article  MathSciNet  Google Scholar 

  31. Kac, V.G.: Contravariant form for infinite dimensional Lie algebras and superalgebras. Lect. Notes Phys. 94, 441–445 (1974)

    Article  Google Scholar 

  32. Kac, V.G.: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  33. Kac, V.G.: Vertex Algebras for Beginners. University Lect. Ser., vol. 10. American Mathematical Society, Providence, RI (1998)

    MATH  Google Scholar 

  34. Kac, V.G., Kazhdan, D.A.: Structure of representations with highest weight of infinite-dimensional Lie algebras. Adv. Math. 34(1), 97–108 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kac, V.G., Raina, A.K.: Bombay lectures on highest weight representations of infinite-dimensional Lie algebras. In: Adv. Ser. Math. Phys., vol. 2. World Scientific Publishing Co., Teaneck, NJ (1987)

  36. Kac, V.G., Roan, S.-S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241(2–3), 307–342 (2003)

    MATH  MathSciNet  Google Scholar 

  37. Kac, V.G., Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Nat. Acad. Sci. USA 85(14), 4956–4960 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kac, V.G., Wakimoto, M.: Classification of modular invariant representations of affine algebras. In: Infinite-Dimensional Lie Algebras and Groups (Luminy–Marseille, 1988). Adv. Ser. Math. Phys., vol. 7, pp.  138–177. World Scientific Publishing, Teaneck, NJ (1989)

  39. Kac, V.G., Wakimoto, M.: Branching functions for winding subalgebras and tensor products. Acta Appl Math. 21(1–2), 3–39 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kac, V.G., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185(2), 400–45 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kashiwara, M., Tanisaki, T.: Kazhdan–Lusztig conjecture for affine Lie algebras with negative level. Duke Math. J. 77, 21–62 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kashiwara, M., Tanisaki, T.: Kazhdan–Lusztig conjecture for affine Lie algebras with negative level. II. Nonintegral case. Duke Math. J. 84(3), 771–813 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kashiwara, M., Tanisaki, T.: Kazhdan–Lusztig conjecture for symmetrizable Kac–Moody Lie algebras. III. Positive rational case. Mikio Sato; a great Japanese mathematician of the twentieth century. Asian J. Math. 2(4), 779–832 (1998)

    MATH  MathSciNet  Google Scholar 

  44. Kashiwara, M., Tanisaki, T.: Characters of irreducible modules with non-critical highest weights over affine Lie algebras. In: Representations and Quantizations (Shanghai, 1998). pp. 275–296, China High. Educ. Press, Beijing (2000)

  45. Kostant, B.: On Whittaker vectors and representation theory. Invent. Math. 48(2), 101–184 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  46. Kostant, B., Sternberg, S.: Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras. Ann. Phys. 176(1), 49–113 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  47. Kumar, S.: Extension of the category \(\mathcal{O}^g\) and a vanishing theorem for the Ext functor for Kac–Moody algebras. J. Algebra 108(2), 472–491 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  48. Lepowsky, J., Li, H.: Introduction to vertex operator algebras and their representations. In: Prog. Math., vol. 227. Birkhäuser Boston Inc., Boston, MA (2004)

    MATH  Google Scholar 

  49. Li, H.: Vertex algebras and vertex Poisson algebras. Commun. Contemp. Math. 6(1), 61–110 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  50. Lukyanov, S.L.: Quantization of the Gelfand–Dikii bracket. Funkts. Anal. Prilozh. 22, 1–10, 96 (1988); translation in Funct. Anal. Appl. 22(4), 255–262 (1988)

  51. Lukyanov, S.L., Fateev, V.A.: Conformally invariant models of two-dimensional quantum field theory with Z n -symmetry. Soviet Phys. JETP 67(3), 447–454 (1988)

    MathSciNet  Google Scholar 

  52. Nagatomo, K., Tsuchiya, A.: Conformal field theories associated to regular chiral vertex operator algebras I; theories over the projective line. Duke Math. J. 128(3), 393–471 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  53. Matsumura, H.: Commutative Algebra. W.A. Benjamin Inc., New York (1970)

    MATH  Google Scholar 

  54. Matsuo, A., Nagatomo, K., Tsuchiya, A.: Quasi-finite algebras graded by Hamiltonian and vertex operator algebras. math.QA/050507

  55. Matumoto, H.: Whittaker vectors and the Goodman–Wallach operators. Acta Math. 161(3–4), 183–241 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  56. Moody, R.V., Pianzola, A.: Lie algebras with triangular decompositions. Can. Math. Soc. Ser. Monogr. Adv. Texts. John Wiley & Sons Inc., New York (1995)

  57. Premet, A.: Special transverse slices and their enveloping algebras. With an appendix by Serge Skryabin. Adv. Math. 170(1), 1–55 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  58. Soergel, W.: Kategorie \(\mathcal{O}\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Amer. Math. Soc. 3(2), 421–445 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  59. Zamolodchikov, A.: Infinite additional symmetries in two-dimensional conformal field theory. Theor. Math. Phys. 65, 1205–1213 (1985)

    Article  MathSciNet  Google Scholar 

  60. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9(1), 237–302 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Arakawa.

Additional information

Mathematics Subject Classification (1991)

17B68, 81R10

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arakawa, T. Representation theory of \(\mathcal{W}\)-algebras. Invent. math. 169, 219–320 (2007). https://doi.org/10.1007/s00222-007-0046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-007-0046-1

Keywords

Navigation