Skip to main content
Log in

Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that if a countable discrete group Γ is w-rigid, i.e. it contains an infinite normal subgroup H with the relative property (T) (e.g. \(\Gamma=SL(2,\mathbb{Z})\ltimes\mathbb{Z}^2\), or Γ=H×H’ with H an infinite Kazhdan group and H’ arbitrary), and \(\mathcal{V}\) is a closed subgroup of the group of unitaries of a finite separable von Neumann algebra (e.g. \(\mathcal{V}\) countable discrete, or separable compact), then any \(\mathcal{V}\)-valued measurable cocycle for a measure preserving action \(\Gamma\curvearrowright X\) of Γ on a probability space (X,μ) which is weak mixing on H and s-malleable (e.g. the Bernoulli action \(\Gamma\curvearrowright[0,1]^{\Gamma}\)) is cohomologous to a group morphism of Γ into \(\mathcal{V}\). We use the case \(\mathcal{V}\) discrete of this result to prove that if in addition Γ has no non-trivial finite normal subgroups then any orbit equivalence between \(\Gamma\curvearrowright X\) and a free ergodic measure preserving action of a countable group Λ is implemented by a conjugacy of the actions, with respect to some group isomorphism Γ≃Λ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, S.: Indecomposability of treed equivalence relations. Isr. J. Math. 64, 362–380 (1988)

    Google Scholar 

  2. Adams, S.: Indecomposability of equivalence relations generated by word hyperbolic groups. Topology 33, 785–798 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burger, M.: Kazhdan constants for SL(3,ℤ). J. Reine Angew. Math. 413, 36–67 (1991)

    MATH  MathSciNet  Google Scholar 

  4. Cherix, P.-A., Cowling, M., Jolissaint, P., Julg, P., Valette, A.: Groups with Haagerup Property. Birkhäuser, Basel Berlin Boston (2000)

    Google Scholar 

  5. Connes, A.: Une classification des facteurs de type III. Ann. Sci. Éc. Norm. Supér., IV. Sér. 6, 133–252 (1973)

    MATH  MathSciNet  Google Scholar 

  6. Connes, A.: Classification of injective factors. Ann. Math. 104, 73–115 (1976)

    Article  MathSciNet  Google Scholar 

  7. Connes, A.: A type II1 factor with countable fundamental group. J. Oper. Theory 4, 151–153 (1980)

    MATH  MathSciNet  Google Scholar 

  8. Connes, A., Feldman, J., Weiss, B.: An amenable equivalence relation is generated by a single transformation. Ergodic Theory Dyn. Syst. 1, 431–450 (1981)

    MATH  MathSciNet  Google Scholar 

  9. Connes, A., Jones, V.F.R.: A II1 factor with two non-conjugate Cartan subalgebras. Bull. Am. Math. Soc. 6, 211–212 (1982)

    MATH  MathSciNet  Google Scholar 

  10. de Cornulier, Y.: Relative Kazhdan property. Ann. Sci. Éc. Norm. Supér., IV. Sér. 39, 301–333 (2006)

    MATH  Google Scholar 

  11. Dixmier, J.: Les C*-Algébres et Leurs Représentations. Gauthier-Villars, Paris (1969)

    Google Scholar 

  12. Dixmier, J.: Sous anneaux abéliens maximaux dans les facteurs de type fini. Ann. Math. 59, 279–286 (1954)

    Article  MathSciNet  Google Scholar 

  13. Dye, H.: On groups of measure preserving transformations. I. Am. J. Math 81, 119–159 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dye, H.: On groups of measure preserving transformations. II. Am. J. Math. 85, 551–576 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  15. Feldman, J., Moore, C.C.: Ergodic equivalence relations, cohomology, and von Neumann algebras I, II. Trans. Am. Math. Soc. 234, 289–359 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fernos, T.: Relative property (T) and linear groups. Ann. Inst. Fourier 56, 1767–1804 (2006)

    MATH  MathSciNet  Google Scholar 

  17. Fisher, D., Hitchman, T.: Cocycle superrigidity and harmonic maps with infinite dimensional targets. Preprint (2005) (math.DG/0511666)

  18. Furman, A.: Gromov’s measure equivalence and rigidity of higher rank lattices. Ann. Math. 150, 1059–1081 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Furman, A.: Orbit equivalence rigidity. Ann. Math. 150, 1083–1108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Furman, A.: Outer automorphism groups of some ergodic equivalence relations. Comment. Math. Helv. 80, 157–196 (2005)

    MATH  MathSciNet  Google Scholar 

  21. Furman, A.: On Popa’s cocycle superrigidity theorem. Preprint (2006)

  22. Furstenberg, H.: Ergodic behavior of diagonal measures and a theorem of Szemeredi on arithmetic progressions. J. Anal. Math. 31, 204–256 (1977)

    MATH  MathSciNet  Google Scholar 

  23. Gaboriau, D.: Cout des rélations d’équivalence et des groupes. Invent. Math. 139, 41–98 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gaboriau, D.: Invariants ℓ2 de rélations d’équivalence et de groupes. Publ. Math., Inst. Hautes Étud. Sci. 95, 93–150 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gefter, S.L.: On cohomologies of ergodic actions of a T-group on homogeneous spaces of a compact Lie group. In: Operators in Functional Spaces and Questions of Function Theory, pp. 77–83. Collect. Sci. Works, Kiev (1987). (Russian)

  26. Gefter, S.L., Golodets, V.Y.: Fundamental groups for ergodic actions and actions with unit fundamental groups. Publ. Res. Inst. Math. Sci. 6, 821–847 (1988)

    MathSciNet  Google Scholar 

  27. de la Harpe, P., Valette, A.: La propriété T de Kazhdan pour les groupes localement compacts. Astérisque, vol. 175. Soc. Math. de France (1989)

  28. Hjorth, G., Kechris, A.: Rigidity Theorems for Actions of Product Groups and Countable Borel Equivalence Relations. Mem. Am. Math. Soc., vol. 177(833) (2005)

  29. Ioana, A., Peterson, J., Popa, S.: Amalgamated free products of w-rigid factors and calculation of their symmetry groups. To appear in Acta Math. (math.OA/0505589)

  30. Jackson, S., Kechris, A., Hjorth, G.: Countable Borel equivalence relations. J. Math. Log. 1, 1–80 (2002)

    Article  Google Scholar 

  31. Jolissaint, P.: On property (T) for pairs of topological groups. Enseign. Math., II. Sér. 51, 31–45 (2005)

    MATH  MathSciNet  Google Scholar 

  32. Jones, V.F.R.: Index for subfactors. Invent. Math. 72, 1–25 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kadison, R.V., Singer, I.M.: Some remarks on representations of connected groups. Proc. Nat. Acad. Sci. 38, 419–423 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kazhdan, D.: Connection of the dual space of a group with the structure of its closed subgroups. Funct. Anal. Appl. 1, 63–65 (1967)

    Article  MATH  Google Scholar 

  35. Margulis, G.: Finitely-additive invariant measures on Euclidian spaces. Ergodic Theory Dyn. Syst. 2, 383–396 (1982)

    MATH  MathSciNet  Google Scholar 

  36. Monod, N., Shalom, Y.: Cocycle superrigidity and bounded cohomology for negatively curved spaces. J. Differ. Geom. 67, 395–455 (2004)

    MATH  MathSciNet  Google Scholar 

  37. Monod, N., Shalom, Y.: Orbit equivalence rigidity and bounded cohomology. Ann. Math. 164, 825–878 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Murray, F., von Neumann, J.: On rings of operators. Ann. Math. 37, 116–229 (1936)

    Article  Google Scholar 

  39. Murray, F., von Neumann, J.: Rings of operators IV. Ann. Math. 44, 716–808 (1943)

    Article  Google Scholar 

  40. von Neumann, J., Segal, I.E.: A theorem on unitary representations of semisimple Lie groups. Ann. Math. 52, 509–516 (1950)

    Article  Google Scholar 

  41. Ornstein, D., Weiss, B.: Ergodic theory of amenable group actions I. The Rohlin lemma. Bull. Am. Math. Soc. (1) 2, 161–164 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  42. Popa, S.: Some rigidity results for non-commutative Bernoulli shifts. J. Funct. Anal. 230, 273–328 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Popa, S.: Strong rigidity of II1 factors arising from malleable actions of w-rigid groups I. Invent. Math. 165, 369–408 (2006) (math.OA/0305306)

    Article  MATH  MathSciNet  Google Scholar 

  44. Popa, S.: Strong rigidity of II1 factors arising from malleable actions of w-rigid groups II. Invent. Math. 165, 409–452 (2006) (math.OA/0407137)

    Article  MATH  MathSciNet  Google Scholar 

  45. Popa, S.: Some computations of 1-cohomology groups and construction of non orbit equivalent actions. J. Inst. Math. Jussieu 5, 309–332 (2006) (math.OA/0407199)

    Article  MATH  MathSciNet  Google Scholar 

  46. Popa, S.: On a class of type II1 factors with Betti numbers invariants. Ann. Math. 163, 809–889 (2006) (math.OA/0209310)

    Article  MATH  Google Scholar 

  47. Popa, S.: Classification of Subfactors and of Their Endomorphisms. CBMS Lect. Notes, vol. 86. Am. Math. Soc. (1995)

  48. Popa, S.: Markov traces on universal Jones algebras and subfactors of finite index. Invent. Math. 111, 375–405 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  49. Popa, S.: Correspondences. INCREST preprint (1986) (unpublished, www.math.ucla.edu/popa/preprints.html)

  50. Popa, S., Sasyk, R.: On the cohomology of Bernoulli actions. Ergodic Theory Dyn. Syst. 27, 241–251 (2007) (math.OA/0310211)

    Article  MATH  MathSciNet  Google Scholar 

  51. Popa, S., Vaes, S.: Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups. Preprint (2006) (math.OA/0605456)

  52. Shalom, Y.: Measurable group theory. In: Proceedings of the 2004 European Congress of Mathematics (Stockholm 2004), pp. 391–423. EMS Publishing House, Zürich (2004)

    Google Scholar 

  53. Singer, I.M.: Automorphisms of finite factors. Am. J. Math. 77, 117–133 (1955)

    Article  MATH  Google Scholar 

  54. Thomas, S.: Popa’s superrigidity and countable Borel equivalence relations. To appear

  55. Vaes, S.: Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa). Séminaire Bourbaki, exposé, vol. 961. To appear in Astérisque. (math.OA/0605456)

  56. Valette, A.: Group pairs with relative property (T) from arithmetic lattices. Geom. Dedicata 112, 183–196 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  57. Zimmer, R.: Strong rigidity for ergodic actions of seimisimple Lie groups. Ann. Math. 112, 511–529 (1980)

    Article  MathSciNet  Google Scholar 

  58. Zimmer, R.: Ergodic Theory and Semisimple Groups. Birkhäuser, Boston (1984)

    MATH  Google Scholar 

  59. Zimmer, R.: Extensions of ergodic group actions. Ill. J. Math. 20, 373–409 (1976)

    MATH  MathSciNet  Google Scholar 

  60. Zimmer, R.: Superrigidity, Ratner’s theorem and the fundamental group. Isr. J. Math. 74, 199–207 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Popa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popa, S. Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups. Invent. math. 170, 243–295 (2007). https://doi.org/10.1007/s00222-007-0063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-007-0063-0

Keywords

Navigation