Skip to main content
Log in

The Effros–Ruan conjecture for bilinear forms on C*-algebras

  • Published:
Inventiones mathematicae Aims and scope

Abstract

In 1991 Effros and Ruan conjectured that a certain Grothendieck-type inequality for a bilinear form on C*-algebras holds if (and only if) the bilinear form is jointly completely bounded. In 2002 Pisier and Shlyakhtenko proved that this inequality holds in the more general setting of operator spaces, provided that the operator spaces in question are exact. Moreover, they proved that the conjecture of Effros and Ruan holds for pairs of C*-algebras, of which at least one is exact. In this paper we prove that the Effros–Ruan conjecture holds for general C*-algebras, with constant one. More precisely, we show that for every jointly completely bounded (for short, j.c.b.) bilinear form on a pair of C*-algebras A and B, there exist states f 1, f 2 on A and g 1, g 2 on B such that for all aA and bB,

$$|u(a, b)|\leq\|u\|_{\mathrm{jcb}}\big(f_1(aa^*)^{1/2}g_1(b^*b)^{1/2}+f_2(a^*a)^{1/2}g_2(bb^*)^{1/2}\big).$$

While the approach by Pisier and Shlyakhtenko relies on free probability techniques, our proof uses more classical operator algebra theory, namely, Tomita–Takesaki theory and special properties of the Powers factors of type IIIλ, 0<λ<1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blecher, D.: Generalizing Grothendieck’s program. In: Jarosz, K. (ed.) Function Spaces. Lect. Notes Pure Appl. Math., vol. 136, pp. 126–144. Marcel Dekker, New York (1992)

    Google Scholar 

  2. Christensen, E., Sinclair, A.: A survey of completely bounded operators. Bull. Lond. Math. Soc. 21, 417–448 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Connes, A.: Une classification des facteurs de type III. Ann. Sci. Éc. Norm. Supér., IV. Sér. 6, 133–252 (1973)

    MATH  MathSciNet  Google Scholar 

  4. Connes, A.: Classification of injective factors. Cases II1, II, IIIλ, λ≠=1. Ann. Math. 104, 73–115 (1976)

    Article  MathSciNet  Google Scholar 

  5. Effros, E., Ruan, Z.-J.: A new approach to operator spaces. Can. Math. Bull. 34(3), 329–337 (1991)

    MATH  MathSciNet  Google Scholar 

  6. Effros, E., Ruan, Z.-J.: Self-duality for the Haagerup tensor product and Hilbert space factorization. J. Funct. Anal. 100, 257–284 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Effros, E., Ruan, Z.-J.: Operator Spaces. Lond. Math. Soc. Monogr., New Ser., vol. 23. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  8. Grothendieck, A.: Resumé de la théorie métrique des produits tensorielles topologiques. Bol. Soc. Mat., Sao Paolo 8, 1–79 (1956)

    Google Scholar 

  9. Haagerup, U.: The Grothendieck inequality for bilinear forms on C*-algebras. Adv. Math. 56(2), 93–116 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Haagerup, U.: The injective factors of type IIIλ, 0<λ<1. Pac. J. Math. 137(2), 265–310 (1989)

    MATH  MathSciNet  Google Scholar 

  11. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras II. Academic Press, Orlando, FL (1986)

    MATH  Google Scholar 

  12. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I, Sequence Spaces. Ergeb. Math. Grenzgeb., vol. 92. Springer, Berlin (1979)

    Google Scholar 

  13. Pisier, G.: Grothendieck’s theorem for non-commutative C*-algebras with an appendix on Grothendieck’s constant. J. Funct. Anal. 29, 397–415 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pisier, G.: The Operator Hilbert Space OH, Complex Interpolation and Tensor Norms. Mem. Am. Math. Soc., vol. 122(585). AMS, Providence, RI (1996)

  15. Pisier, G.: An Introduction to the Theory of Operator Spaces. Lond. Math. Soc. Lect. Note Ser., vol. 294. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  16. Pisier, G., Shlyakhtenko, D.: Grothendieck’s theorem for operator spaces. Invent. Math. 150, 185–217 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Takesaki, M.: The structure of von Neumann algebras with a homogeneous periodic state. Acta Math. 131, 79–121 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  18. Takesaki, M.: Theory of Operator Algebras II, III. Springer, Berlin Heidelberg New York (2003)

    Google Scholar 

  19. Xu, Q.: Operator space Grothendieck inequalities for noncommutative L p -spaces. Duke Math. J. 131, 525–574 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uffe Haagerup.

Additional information

Mathematics Subject Classification (2000)

46L10, 47L25

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haagerup, U., Musat, M. The Effros–Ruan conjecture for bilinear forms on C*-algebras. Invent. math. 174, 139–163 (2008). https://doi.org/10.1007/s00222-008-0137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-008-0137-7

Keywords

Navigation