Skip to main content
Log in

On the uniqueness of smooth, stationary black holes in vacuum

  • Published:
Inventiones mathematicae Aims and scope

Abstract

A fundamental conjecture in general relativity asserts that the domain of outer communication of a regular, stationary, four dimensional, vacuum black hole solution is isometrically diffeomorphic to the domain of outer communication of a Kerr black hole. So far the conjecture has been resolved, by combining results of Hawking [17], Carter [4] and Robinson [28], under the additional hypothesis of non-degenerate horizons and real analyticity of the space-time. We develop a new strategy to bypass analyticity based on a tensorial characterization of the Kerr solutions, due to Mars [24], and new geometric Carleman estimates. We prove, under a technical assumption (an identity relating the Ernst potential and the Killing scalar) on the bifurcate sphere of the event horizon, that the domain of outer communication of a smooth, regular, stationary Einstein vacuum spacetime of dimension 4 is locally isometric to the domain of outer communication of a Kerr spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beig, R., Simon, W.: The stationary gravitational field near spatial infinity. Gen. Relativ. Gravitation 12(12), 1003–1013 (1980)

    Article  MathSciNet  Google Scholar 

  2. Beig, R., Simon, W.: On the multipole expansion for stationary space-times. Proc. R. Soc. Lond., Ser. A 376(1765), 333–341 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buntingand, G., Massood ul Alam, A.K.M.: Non-existence of multiple black holes in asymptotically Euclidean static vacuum space-time. Gen. Relativ. Gravitation 19, 147–154 (1987)

    Article  Google Scholar 

  4. Carter, B.: An axy-symmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331–333 (1971)

    Article  Google Scholar 

  5. Carter, B.: Has the black hole equilibrium problem been solved? In: The Eighth Marcel Grossmann meeting, Part A, B (Jerusalem, 1997), pp. 136–155. World Sci. Publ., River Edge, NJ (1999)

    Google Scholar 

  6. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Int. Ser. Monogr. Phys., vol. 69. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1983)

    MATH  Google Scholar 

  7. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton Math. Ser., vol. 41. Princeton University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  8. Chrusciel, P.T.: On completeness of orbits of Killing vector fields. Classical Quantum Gravity 10, 2091–2101 (1993). arXiv:gr-qc/9304029

    Article  MATH  MathSciNet  Google Scholar 

  9. Chrusciel, P.T.: “No hair” theorems – folclore, conjecture, results. In: Beem, J., Duggal, K.L. (eds.): Differential Geometry and Mathematical Physics. Contemp. Math., vol. 170, pp. 23–49. Am. Math. Soc., Providence, RI (1994). arXiv:gr-qc/9402032

    Google Scholar 

  10. Chrusciel, P.T.: Uniqueness of stationary, electro-vaccum black holes revisited. Journees Relativistes 96, Part II (Ascona, 1996). Helv. Phys. Acta 69, 529–552 (1996). arXiv:gr-qc/9610010

    MATH  MathSciNet  Google Scholar 

  11. Chrusciel, P.T.: The classification of static vacuum space-times containing an asymptotically flat space-like hypersurface with compact interior. Classical Quantum Gravity 16, 661–687 (1999). arXiv:gr-qc/9809088

    Article  MATH  MathSciNet  Google Scholar 

  12. Chrusciel, P.T., Delay, T., Galloway, G., Howard, R.: Regularity of horizon and the area theorem. Ann. Inst. Henri Poincaré 2, 109–178 (2001). arXiv:gr-qc/0001003

    Article  MATH  MathSciNet  Google Scholar 

  13. Chrusciel, P.T., Wald, R.M.: On the topology of stationary black holes. Classical Quantum Gravity 10, 2091–2101 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chrusciel, P.T., Wald, R.M.: Maximal hypersurfaces in AF space-times. Commun. Math. Phys. 163, 561–164 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Friedrich, H., Racz, I., Wald, R.: On the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon. Commun. Math. Phys. 204, 691–707 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Friedman, J.L., Schleich, K., Witt, D.M.: Topological censorship. Phys. Rev. Lett. 71, 1846–1849 (1993)

    Article  MathSciNet  Google Scholar 

  17. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-time. Cambridge University Press, London, New York (1973)

    MATH  Google Scholar 

  18. Hörmander, L.: The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators. Grundlehren Math. Wiss., vol. 275. Springer, Berlin (1985)

    MATH  Google Scholar 

  19. Ionescu, A., Klainerman, S.: Uniqueness results for ill posed characteristic problems in curved space-times. Preprint (2007). arXiv:0711.0042

  20. Isenberg, J., Moncrief, V.: Symmetries of cosmological Cauchy horizons. Commun. Math. Phys. 89, 387–413 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Israel, W.: Event horizons in static vacuum space-times. Phys. Rev. Lett. 164, 1776–1779 (1967)

    Google Scholar 

  22. Klainerman, S., Nicolò, F.: The Evolution Problem in General Relativity. Progr. Math. Phys., vol. 25. Birkhäuser, Boston, MA (2003)

    MATH  Google Scholar 

  23. Kobayashi, S.: Transformations Groups in Differential Geometry. Springer, New York, Heidelberg (1972)

    Google Scholar 

  24. Mars, M.: A spacetime characterization of the Kerr metric. Classical Quantum Gravity 16, 2507–2523 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mars, M.: Uniqueness properties of the Kerr metric. Classical Quantum Gravity 17, 3353–3373 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Newman, E.T., Penrose, R.: An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566–578 (1962)

    Article  MathSciNet  Google Scholar 

  27. Racz, I., Wald, R.: Extensions of space-times with Killing horizons. Classical Quantum Gravity 9, 2463–2656 (1992)

    Article  MathSciNet  Google Scholar 

  28. Robinson, D.C.: Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34, 905–906 (1975)

    Article  Google Scholar 

  29. Simon, W.: Characterization of the Kerr metric. Gen. Relativ. Gravitation 16, 465–476 (1984)

    Article  MATH  Google Scholar 

  30. Sudarski, D., Wald, R.M.: Mass formulas for stationary Einstein Yang–Mills black holes and a simple proof of two staticity theorems. Phys. Rev. D 47, 5209–5213 (1993). arXiv:gr-qc/9305023

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiu Klainerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionescu, A., Klainerman, S. On the uniqueness of smooth, stationary black holes in vacuum. Invent. math. 175, 35–102 (2009). https://doi.org/10.1007/s00222-008-0146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-008-0146-6

Keywords

Navigation