Skip to main content
Log in

Non-uniform hyperbolicity in complex dynamics

  • Published:
Inventiones mathematicae Aims and scope

Résumé

Nous disons qu’une application rationnelle F satisfait la condition de sommabilité avec un exposant α si pour tout point critique c qui appartient à l’ensemble de Julia J, il y a un entier positif n c tel que \(\sum_{n=1}^{\infty} |(F^{n})^{\prime}(F^{n_{c}}(c))|^{-\alpha}<\infty\) et F n’a pas de points périodiques paraboliques. Soit μ max la multiplicité maximale des points critiques de F.

L’objectif est d’étudier les séries de Poincaré pour une large classe d’applications rationnelles et d’établir les propriétés ergodiques et la regularité des mesures conformes. Si F est sommable avec un exposant \(\alpha<\frac{\delta_{\textit{Poin}}(J)}{\delta_{\textit{Poin}}(J)+\mu_{\textit{max}}}\), où δ Poin (J) est l’exposant de Poincaré de l’ensemble de Julia, alors il existe une unique mesure conforme ν avec l’exposant δ Poin (J)=HDim(J) qui est invariante, ergodique, et non-atomique. De plus, F possède une mesure invariante absolument continue par rapport à ν pourvu que \(\sum_{n=1}^{\infty}n |(F^{n})^{\prime}(F^{n_{c}}(c))|^{-\alpha}<\infty\) (sommabilité de type polynômial) et que F n’a pas de points périodiques paraboliques. Cela aboutit à un nouveau résultat sur l’existence des mesures invariantes absolument continues pour des applications multimodales d’un intervalle.

Nous démontrons que si F est sommable avec un exposant \(\alpha<\frac{2}{2+\mu_{\textit{max}}}\), alors la dimension de Minkowski de J, si \(J\neq\hat{\mathbb{C}}\), est strictement plus petite que 2 et F est instable. Si F est un polynôme ou un produit de Blaschke, alors J est conformément effaçable. Si F est sommable avec \(\alpha<\frac{1}{1+\mu_{\textit{max}}}\), alors toute composante connexe de la frontière de chaque composante de Fatou invariante est localement connexe. Pour étudier la continuité de la dimension de Hausdorff des ensembles de Julia, nous introduisons le concept de la sommabilité uniforme.

Enfin, nous en déduisons un analogue conforme du théorème de Jakobson et Benedicks-Carleson. Nous montrons la continuité externe de la dimension de Hausdorff des ensembles de Julia pour presque tout point de l’ensemble de Mandelbrot par rapport à la mesure harmonique.

Abstract

We say that a rational function F satisfies the summability condition with exponent α if for every critical point c which belongs to the Julia set J there exists a positive integer n c so that \(\sum_{n=1}^{\infty} |(F^{n})^{\prime}(F^{n_{c}}(c))|^{-\alpha}<\infty\) and F has no parabolic periodic cycles. Let μ max be the maximal multiplicity of the critical points.

The objective is to study the Poincaré series for a large class of rational maps and establish ergodic and regularity properties of conformal measures. If F is summable with exponent \(\alpha<\frac{\delta_{\textit{Poin}}(J)}{\delta_{\textit{Poin}}(J)+\mu_{\textit{max}}}\) where δ Poin (J) is the Poincaré exponent of the Julia set then there exists a unique, ergodic, and non-atomic conformal measure ν with exponent δ Poin (J)=HDim(J). If F is polynomially summable with the exponent α, \(\sum_{n=1}^{\infty}n |(F^{n})^{\prime}(F^{n_{c}}(c))|^{-\alpha}<\infty\) and F has no parabolic periodic cycles, then F has an absolutely continuous invariant measure with respect to ν. This leads also to a new result about the existence of absolutely continuous invariant measures for multimodal maps of the interval.

We prove that if F is summable with an exponent \(\alpha< \frac{2}{2+\mu_{\textit{max}}}\) then the Minkowski dimension of J is strictly less than 2 if \(J\neq\hat{\mathbb{C}}\) and F is unstable. If F is a polynomial or Blaschke product then J is conformally removable. If F is summable with \(\alpha<\frac{1}{1+\mu_{\textit{max}}}\) then connected components of the boundary of every invariant Fatou component are locally connected. To study continuity of Hausdorff dimension of Julia sets, we introduce the concept of the uniform summability.

Finally, we derive a conformal analogue of Jakobson’s (Benedicks–Carleson’s) theorem and prove the external continuity of the Hausdorff dimension of Julia sets for almost all points c from the Mandelbrot set with respect to the harmonic measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aspenberg, M.: The Collet–Eckmann condition for rational maps on the Riemann sphere. Ph.D. Thesis, KTH Sweden (2004)

  2. Beardon, A.F.: Iteration of Rational Functions. Springer, New York (1991)

    MATH  Google Scholar 

  3. Benedicks, M., Carleson, L.: On iterations of 1-ax2 on (-1,1). Ann. Math. (2) 122(1), 1–25 (1985)

    Article  MathSciNet  Google Scholar 

  4. Benedicks, M., Carleson, L.: The dynamics of the Hénon map. Ann. Math. (2) 133(1), 73–169 (1991)

    Article  MathSciNet  Google Scholar 

  5. Bishop, C.J.: Minkowski dimension and the Poincaré exponent. Mich. Math. J. 43(2), 231–246 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bishop, C.J., Jones, P.W.: Hausdorff dimension and Kleinian groups. Acta Math. 179(1), 1–39 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bruin, H., van Strien, S.: Expansion of derivatives in one-dimensional dynamics. Isr. J. Math. 137, 223–263 (2003)

    Article  MATH  Google Scholar 

  8. Bruin, H., Luzzatto, S., van Strien, S.: Decay of correlations in one-dimensional dynamics. Ann. Sci. Éc. Norm. Supér., IV. Sér. 36(4), 621–646 (2003)

    MATH  Google Scholar 

  9. Bruin, H., Shen, W., van Strien, S.: Invariant measures exist without a growth condition. Commun. Math. Phys. 241(2–3), 287–306 (2003)

    MATH  Google Scholar 

  10. Carleson, L., Gamelin, T.W.: Complex Dynamics. Springer, New York (1993)

    MATH  Google Scholar 

  11. De Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer, Berlin (1993)

    MATH  Google Scholar 

  12. Denker, M., Urbański, M.: On Sullivan’s conformal measures for rational maps of the Riemann sphere. Nonlinearity 4(2), 365–384 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Denker, M., Urbański, M.: On the existence of conformal measures. Trans. Am. Math. Soc. 328(2), 563–587 (1991)

    Article  MATH  Google Scholar 

  14. Douady, A., Sentenac, P., Zinsmeister, M.: Implosion parabolique et dimension de Hausdorff. C.R. Acad. Sci. Paris, Sér. I 325(7), 765–772 (1997)

    MATH  MathSciNet  Google Scholar 

  15. Federer, H.: Geometric Measure Theory. Grundl. Math. Wissensch., vol. 153. Springer, New York (1969)

    MATH  Google Scholar 

  16. Gehring, F.W., Martio, O.: Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn., Ser. A I, Math. 10, 203–219 (1985)

    MATH  MathSciNet  Google Scholar 

  17. Graczyk, J., Sands, D., Świątek, G.: Metric attractors for smooth unimodal maps. Ann. Math. (2) 159(2), 725–740 (2004)

    Article  MATH  Google Scholar 

  18. Graczyk, J., Smirnov, S.: Collet, Eckmann and Hölder. Invent. Math. 133(1), 69–96 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Graczyk, J., Świątek, G.: The Real Fatou Conjecture. Princeton University Press, Princeton, NJ (1998)

    MATH  Google Scholar 

  20. Graczyk, J., Świątek, G.: Harmonic measure and expansion on the boundary of the connectedness locus. Invent. Math. 142(3), 605–629 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1988). Reprint of the 1952 edition

    MATH  Google Scholar 

  22. Heinonen, J., Koskela, P.: Definitions of quasiconformality. Invent. Math. 120(1), 61–79 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jakobson, M.V.: Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys. 81(1), 39–88 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jones, P.W., Smirnov, S.K.: Removability theorems for Sobolev functions and quasiconformal maps. Ark. Mat. 38(2), 263–279 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kallunki, S., Koskela, P.: Exceptional sets for the definition of quasiconformality. Am. J. Math. 122(4), 735–743 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kozlovski, O., Shen, W., van Strien, S.: Rigidity for real polynomials. Ann. Math. (2) 165(3), 749–841 (2007)

    MATH  Google Scholar 

  27. Koskela, P.: Old and new on the quasihyperbolic metric. In: Quasiconformal Mappings and Analysis (Ann Arbor, MI, 1995), pp. 205–219. Springer, New York (1998)

    Google Scholar 

  28. Levin, G., van Strien, S.: Local connectivity of the Julia set of real polynomials. Ann. Math. (2) 147(3), 471–541 (1998)

    Article  MATH  Google Scholar 

  29. Mañé, R., Sad, P., Sullivan, D.: On the dynamics of rational maps. Ann. Sci. Éc. Norm. Supér., IV. Sér. 16(2), 193–217 (1983)

    MATH  Google Scholar 

  30. Mañé, R.: The Hausdorff dimension of invariant probabilities of rational maps. In: Dynamical Systems (Valparaiso, 1986). Lect. Notes Math., vol. 1331, pp. 86–117. Springer, Berlin, New York (1988)

    Chapter  Google Scholar 

  31. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  32. McMullen, C.T.: Complex Dynamics and Renormalization. Princeton University Press, Princeton, NJ (1994)

    Google Scholar 

  33. McMullen, C.T.: Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps. Comment. Math. Helv. 75(4), 535–593 (2000)

    MATH  MathSciNet  Google Scholar 

  34. Nowicki, T., van Strien, S.: Invariant measures exist under a summability condition for unimodal maps. Invent. Math. 105(1), 123–136 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. Pommerenke, C.: Boundary Behavior of Conformal Maps. Springer, New York (1992)

    Google Scholar 

  36. Przytycki, F.: On measure and Hausdorff dimension of Julia sets of holomorphic Collet–Eckmann maps. In: International Conference on Dynamical Systems (Montevideo, 1995), pp. 167–181. Longman, Harlow (1996)

    Google Scholar 

  37. Przytycki, F.: Iterations of holomorphic Collet–Eckmann maps: Conformal and invariant measures. Appendix: On non-renormalizable quadratic polynomials. Trans. Am. Math. Soc. 350(2), 717–742 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Przytycki, F.: Conical limit set and Poincaré exponent for iterations of rational functions. Trans. Am. Math. Soc. 351(5), 2081–2099 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. Przytycki, F., Rohde, S.: Rigidity of holomorphic Collet–Eckmann repellers. Ark. Mat. 37(2), 357–371 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rees, M.: Positive measure sets of ergodic rational maps. Ann. Sci. Éc. Norm. Supér., IV. Sér. 19(3), 383–407 (1986)

    MATH  MathSciNet  Google Scholar 

  41. Shishikura, M.: The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets. Ann. Math. (2) 147(2), 225–267 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. Smirnov, S.: Symbolic dynamics and Collet–Eckmann conditions. Int. Math. Res. Not. 2000(7), 333–351 (2000)

    Article  MATH  Google Scholar 

  43. Smith, W., Stegenga, D.A.: Hölder domains and Poincaré domains. Trans. Am. Math. Soc. 319(1), 67–100 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  44. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  45. Sullivan, D.: Conformal dynamical systems. In: Geometric Dynamics (Rio de Janeiro, 1981), pp. 725–752. Springer, Berlin (1983)

    Chapter  Google Scholar 

  46. Tsujii, M.: Positive Lyapunov exponents in families of one-dimensional dynamical systems. Invent. Math. 111(1), 113–137 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  47. Urbański, M.: Measures and dimensions in conformal dynamics. Bull. Am. Math. Soc. 40, 281–321 (2003)

    Article  MATH  Google Scholar 

  48. Walters, P.: Ergodic Theory – Introductory Lectures. Lect. Notes Math., vol. 458. Springer, Berlin, New York (1975)

    MATH  Google Scholar 

  49. Whyburn, G.T.: Analytic Topology. Am. Math. Soc., Providence, RI (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Graczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graczyk, J., Smirnov, S. Non-uniform hyperbolicity in complex dynamics . Invent. math. 175, 335–415 (2009). https://doi.org/10.1007/s00222-008-0152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-008-0152-8

Keywords

Navigation