Skip to main content
Log in

Geometry of the mapping class groups I: Boundary amenability

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We construct a geometric model for the mapping class group \(\mathcal{M}\mathcal{C}\mathcal{G}\) of a non-exceptional oriented surface S of genus g with k punctures and use it to show that the action of \(\mathcal{M}\mathcal{C}\mathcal{G}\) on the compact metrizable Hausdorff space of complete geodesic laminations for S is topologically amenable. As a consequence, the Novikov higher signature conjecture holds for every subgroup of \(\mathcal{M}\mathcal{C}\mathcal{G}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, S.: Reduction of cocycles with hyperbolic target. Ergodic Theory Dyn. Syst. 16, 1111–1145 (1996)

    MATH  Google Scholar 

  2. Anantharaman-Delaroche, C., Renault, J.: Amenable Groupoids. Monographie 36 de l‘Enseignement Math. Genève (2000)

  3. Baum, P., Connes, A., Higson, N.: Classifying space for proper G-actions and K-theory of group C *-algebras. Contemp. Math. 167, 241–291 (1994)

    MathSciNet  Google Scholar 

  4. Bonahon, F.: Geodesic laminations on surfaces. Contemp. Math. 269, 1–37 (1997)

    MathSciNet  Google Scholar 

  5. Bowditch, B.: Tight geodesics in the curve complex. Invent. Math. 171, 281–300 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bridson, M., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer Grundlehren, vol. 319. Springer, Berlin (1999)

    MATH  Google Scholar 

  7. Burger, M., Monod, N.: Bounded cohomology of lattices in higher rank Lie groups. J. Eur. Math. Soc. 1, 199–235 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burger, M., Monod, N.: Continuous bounded cohomology and applications to rigidity theory. Geom. Funct. Anal. 12, 219–280 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  10. Canary, R., Epstein, D., Green, P.: Notes on notes of Thurston. In: Epstein, D. (ed.) Analytical and Geometric Aspects of Hyperbolic Space. Lond. Math. Soc. Lect. Notes, vol. 111. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  11. Casson, A., Bleiler, S.: Automorphisms of Surfaces after Nielsen and Thurston. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  12. Farb, B., Lubotzky, A., Minsky, Y.: Rank one phenomena for mapping class groups. Duke Math. J. 106, 581–597 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les surfaces. Astérisque 66–67 (1991), 286 p.

  14. Hamenstädt, U.: Train tracks and the Gromov boundary of the complex of curves. In: Minsky, Y., Sakuma, M., Series, C. (eds.) Spaces of Kleinian Groups. Lond. Math. Soc. Lect. Notes, vol. 329, pp. 187–207. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  15. Hamenstädt, U.: Bounded cohomology and isometry groups of hyperbolic spaces. J. Eur. Math. Soc. 10, 315–349 (2008)

    Article  MATH  Google Scholar 

  16. Higson, N.: Biinvariant K-theory and the Novikov conjecture. Geom. Funct. Anal. 10, 563–581 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Higson, N., Roe, J.: Amenable group actions and the Novikov conjecture. J. Reine Angew. Math. 519, 143–153 (2000)

    MATH  MathSciNet  Google Scholar 

  18. Hubbard, J., Masur, H.: Quadratic differentials and foliations. Acta Math. 142, 221–274 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ivanov, N.V.: Mapping class groups. In: Daverman, R.J., Sher, R.B. (eds.) Handbook of Geometric Topology (Chapter 12), pp. 523–633. Elsevier Science, North-Holland, Amsterdam (2002)

    Google Scholar 

  20. Kaimanovich, V.: Double ergodicity of the Poisson boundary and applications to bounded cohomology. Geom. Funct. Anal. 13, 852–861 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kaimanovich, V.: Boundary amenability of hyperbolic spaces. Contemp. Math. 347, 83–114 (2004)

    MathSciNet  Google Scholar 

  22. Kaimanovich, V., Masur, H.: The Poisson boundary of the mapping class group. Invent. Math. 125, 221–264 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kerckhoff, S., Masur, H., Smillie, J.: Ergodicity of billiard flows and quadratic differentials. Ann. Math. 124, 293–311 (1986)

    Article  MathSciNet  Google Scholar 

  24. Kida, Y.: The mapping class group from the viewpoint of measure equivalence theory. Mem. Am. Math. Soc. arXiv:math.GR/0512230 (to appear)

  25. Klarreich, E.: The boundary at infinity of the curve complex and the relative Teichmüller space. Unpublished Manuscript, Ann Arbor (1999)

  26. Masur, H.: Interval exchange transformations and measured foliations. Ann. Math. 115, 169–201 (1982)

    Article  MathSciNet  Google Scholar 

  27. Masur, H., Minsky, Y.: Geometry of the complex of curves I: Hyperbolicity. Invent. Math. 138, 103–149 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. McCarthy, J., Papadopoulos, A.: Dynamics on Thurston’s sphere of projective measured foliations. Comment. Math. Helv. 64, 133–166 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mineyev, I., Monod, N., Shalom, Y.: Ideal bicombings for hyperbolic groups and applications. Topology 43, 1319–1344 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mislin, G., Valette, A.: Proper Group Actions and the Baum–Connes Conjecture. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  31. Monod, N., Shalom, Y.: Cocycle superrigidity and bounded cohomology for negatively curved spaces. J. Differ. Geom. 67, 395–456 (2004)

    MATH  MathSciNet  Google Scholar 

  32. Mosher, L.: Train track expansions of measured foliations. Unpublished Manuscript (2003)

  33. Penner, R., Harer, J.: Combinatorics of Train Tracks. Ann. Math. Stud., vol. 125. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  34. Schmidt, K., Walters, P.: Mildly mixing actions of locally compact groups. Proc. Lond. Math. Soc. 45, 506–518 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  35. Thurston, W.: Three-dimensional geometry and topology. Unpublished Manuscript (1979)

  36. Veech, W.: The Teichmüller geodesic flow. Ann. Math. 124, 441–530 (1986)

    Article  MathSciNet  Google Scholar 

  37. Yu, G.: The coarse Baum–Connes conjecture for groups with finite asymptotic dimension. Ann. Math. 147, 325–355 (1998)

    Article  MATH  Google Scholar 

  38. Yu, G.: The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139, 201–240 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zhu, X., Bonahon, F.: The metric space of geodesic laminations on a surface I. Geom. Topol. 8, 539–564 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zimmer, R.: Ergodic Theory and Semisimple Groups. Birkhäuser, Boston (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Hamenstädt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamenstädt, U. Geometry of the mapping class groups I: Boundary amenability. Invent. math. 175, 545–609 (2009). https://doi.org/10.1007/s00222-008-0158-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-008-0158-2

Keywords

Navigation