Skip to main content
Log in

Algebraic cobordism revisited

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We define a cobordism theory in algebraic geometry based on normal crossing degenerations with double point singularities. The main result is the equivalence of double point cobordism to the theory of algebraic cobordism previously defined by Levine and Morel. Double point cobordism provides a simple, geometric presentation of algebraic cobordism theory. As a corollary, the Lazard ring given by products of projective spaces rationally generates all nonsingular projective varieties modulo double point degenerations.

Double point degenerations arise naturally in relative Donaldson–Thomas theory. We use double point cobordism to prove all the degree 0 conjectures in Donaldson–Thomas theory: absolute, relative, and equivariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich, D., Karu, K., Matsuki, K., Włodarczyk, J.: Torification and factorization of birational maps. J. Am. Math. Soc. 15, 531–572 (2002)

    Article  MATH  Google Scholar 

  2. Behrend, K.: Donaldson–Thomas invariants via microlocal geometry. math.AG/0507523

  3. Behrend, K., Fantechi, B.: Symmetric obstruction theories and Hilbert schemes of points on threefolds. Algebra Number Theory 2(3), 313–345 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Bialynicki-Birula, A.: Some theorems on the actions of algebraic groups. Ann. Math. 98, 480–497 (1973)

    Article  MathSciNet  Google Scholar 

  5. Bryan, J., Pandharipande, R.: The local Gromov–Witten theory of curves. With an appendix by Bryan, J., Faber, C., Okounkov, A., Pandharipande, R. J. Am. Math. Soc. 21(1), 101–136 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dai, S.: Isomorphisms between algebraic cobordism and K-theory over singular schemes. Ph.D. thesis, Northeastern University (2007). http://www.math.uiuc.edu/K-theory/0911/

  7. Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. In: GAFA 2000 – Visions in Mathematics – Towards 2000. Geom. Funct. Anal., vol. 2000, pp. 560–673. Birkhäuser, Basel (2000)

    Google Scholar 

  8. Faber, C., Pandharipande, R.: Hodge integrals and Gromov–Witten theory. Invent. Math. 139, 173–199 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Faber, C., Pandharipande, R.: Relative maps and tautological classes. J. Eur. Math. Soc. 7, 13–49 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fulton, W.: Intersection Theory. Ergeb. Math. Grenzgeb., 3. Folge, vol. 2. Springer, Berlin-New York (1984)

    MATH  Google Scholar 

  11. Fulton, W.: A note on the arithmetic genus. Am. J. Math. 101(6), 1355–1363 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Graber, T., Pandharipande, R.: Localization of virtual classes. Invent. Math. 135, 487–518 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ionel, E., Parker, T.: Relative Gromov–Witten invariants. Ann. Math. 157, 45–96 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kontsevich, M.: Enumeration of rational curves via torus actions. In: The Moduli Space of Curves (Texel Island, 1994). Prog. Math., vol. 129, pp. 335–368. Birkhäuser, Boston, MA (1995)

    Google Scholar 

  15. Lazard, M.: Sur les groupes de Lie formels à un paramètre. Bull. Soc. Math. France 83, 251–274 (1955)

    MATH  MathSciNet  Google Scholar 

  16. Levine, M.: Algebraic cobordism. In: Proceedings of the ICM (Beijing 2002), Vol II., pp. 57–66. Higher Ed. Press, Beijing (2002)

    Google Scholar 

  17. Levine, M.: A survey of algebraic cobordism. Proceedings of the international conference on algebra. Algebra Colloq. 11, 79–90 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Levine, M.: Algebraic cobordism II. Preprint 2002. www.math.uiuc.edu/K-theory/0577

  19. Levine, M., Morel, F.: Cobordisme algébrique I. C. R. Acad. Sci. Paris, Sér. I, Math. 332, 723–728 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Levine, M., Morel, F.: Cobordisme algébrique II. C. R. Acad. Sci. Paris, Sér. I, Math. 332, 815–820 (2001)

    MATH  MathSciNet  Google Scholar 

  21. Levine, M., Morel, F.: Algebraic cobordism I. Preprint 2002. www.math.uiuc.edu/K-theory/0547

  22. Levine, M., Morel, F.: Algebraic Cobordism. Springer Monographs in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  23. Li, A.-M., Ruan, Y.: Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3-folds I. Invent. Math. 145(1), 151–218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, J.: A degeneration formula for Gromov–Witten invariants. J. Differ. Geom. 60, 199–293 (2002)

    MATH  Google Scholar 

  25. Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov–Witten theory and Donaldson–Thomas theory I. Compos. Math. 142(5), 1263–1285 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov–Witten theory and Donaldson–Thomas theory II. Compos. Math. 142(5), 1286–1304 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Maulik, D., Pandharipande, R.: A topological view of Gromov–Witten theory. Topology 45(5), 887–918 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nenashev, A.: A blow-up relation in algebraic cobordism. Preprint 2005. http://www.math.uiuc.edu/K-theory/0758/

  29. Okounkov, A., Pandharipande, R.: Local Donaldson–Thomas theory of curves. math.AG/0512573

  30. Pandharipande, R.: Three questions in Gromov–Witten theory. In: Proceedings of the ICM (Beijing 2002), Vol II., pp. 503–512. Higher Ed. Press, Beijing (2002)

    Google Scholar 

  31. Quillen, D.G.: Elementary proofs of some results of cobordism theory using Steenrod operations. Adv. Math. 7, 29–56 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  32. Stanley, R.: Enumerative Combinatorics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  33. Stong, R.: Note on cobordism theory. In: Mathematical Notes. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo (1968)

  34. Thomas, R.: A holomorphic Casson invariant for Calabi–Yau 3-folds and bundles on K3 fibrations. J. Differ. Geom. 54, 367–438 (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Levine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, M., Pandharipande, R. Algebraic cobordism revisited. Invent. math. 176, 63–130 (2009). https://doi.org/10.1007/s00222-008-0160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-008-0160-8

Keywords

Navigation