Skip to main content
Log in

On the role of convexity in isoperimetry, spectral gap and concentration

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We show that for convex domains in Euclidean space, Cheeger’s isoperimetric inequality, spectral gap of the Neumann Laplacian, exponential concentration of Lipschitz functions, and the a-priori weakest requirement that Lipschitz functions have arbitrarily slow uniform tail-decay, are all quantitatively equivalent (to within universal constants, independent of the dimension). This substantially extends previous results of Maz’ya, Cheeger, Gromov–Milman, Buser and Ledoux. As an application, we conclude a sharp quantitative stability result for the spectral gap of convex domains under convex perturbations which preserve volume (up to constants) and under maps which are “on-average” Lipschitz. We also provide a new characterization (up to constants) of the spectral gap of a convex domain, as one over the square of the average distance from the “worst” subset having half the measure of the domain. In addition, we easily recover and extend many previously known lower bounds on the spectral gap of convex domains, due to Payne–Weinberger, Li–Yau, Kannan–Lovász–Simonovits, Bobkov and Sodin. The proof involves estimates on the diffusion semi-group following Bakry–Ledoux and a result from Riemannian Geometry on the concavity of the isoperimetric profile. Our results extend to the more general setting of Riemannian manifolds with density which satisfy the CD(0,∞) curvature-dimension condition of Bakry-Émery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Almgren, F.J. Jr.: Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Ann. Math. (2) 87, 321–391 (1968)

    Article  MathSciNet  Google Scholar 

  2. Almgren, F.J. Jr.: Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc. 4(165) (1976)

  3. Alon, N., Milman, V.D.: Concentration of measure phenomena in the discrete case and the Laplace operator of a graph. In: Israel Seminar on Geometrical Aspects of Functional Analysis (1983/84). Tel Aviv Univ., Tel Aviv (1984)

    Google Scholar 

  4. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de Probabilités, XIX, 1983/84. Lecture Notes in Math., vol. 1123, pp. 177–206. Springer, Berlin (1985)

    Chapter  Google Scholar 

  5. Bakry, D., Ledoux, M.: Lévy-Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator. Invent. Math. 123(2), 259–281 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barthe, F.: Levels of concentration between exponential and Gaussian. Ann. Fac. Sci. Toulouse Math. (6) 10(3), 393–404 (2001)

    MATH  MathSciNet  Google Scholar 

  7. Barthe, F., Kolesnikov, A.V.: Mass transport and variants of the logarithmic Sobolev inequality. J. Geom. Anal. 18(4), 921–979 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Barthe, F., Maurey, B.: Some remarks on isoperimetry of Gaussian type. Ann. Inst. H. Poincaré Probab. Stat. 36(4), 419–434 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Barthe, F., Roberto, C.: Sobolev inequalities for probability measures on the real line. Stud. Math. 159(3), 481–497 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Barthe, F., Cattiaux, P., Roberto, C.: Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Mat. Iberoam. 22(3), 993–1067 (2006)

    MATH  MathSciNet  Google Scholar 

  11. Bavard, C., Pansu, P.: Sur le volume minimal de R 2. Ann. Sci. École Norm. Sup. 19(4), 479–490 (1986)

    MATH  MathSciNet  Google Scholar 

  12. Bayle, V.: Propriétés de concavité du profil isopérimétrique et applications. Ph.D. thesis, Institut Joseph Fourier, Grenoble (2004)

  13. Bayle, V., Rosales, C.: Some isoperimetric comparison theorems for convex bodies in Riemannian manifolds. Indiana Univ. Math. J. 54(5), 1371–1394 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Benjamini, I., Cao, J.: A new isoperimetric comparison theorem for surfaces of variable curvature. Duke Math. J. 85(2), 359–396 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bishop, R.L.: Infinitesimal convexity implies local convexity. Indiana Univ. Math. J. 24, 169–172 (1974/75)

    Article  MathSciNet  Google Scholar 

  16. Bobkov, S.: Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24(1), 35–48 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bobkov, S.: On isoperimetric constants for log-concave probability distributions. In: Geometric Aspects of Functional Analysis, Israel Seminar 2004–2005. Lecture Notes in Math., vol. 1910, pp. 81–88. Springer, Berlin (2007)

    Chapter  Google Scholar 

  18. Bobkov, S.G.: Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27(4), 1903–1921 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bobkov, S.G., Houdré, C.: Isoperimetric constants for product probability measures. Ann. Probab. 25(1), 184–205 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bobkov, S.G., Houdré, C.: Some connections between isoperimetric and Sobolev-type inequalities. Mem. Am. Math. Soc. 129(616) (1997)

  21. Bollobás, B., Leader, I.: Edge-isoperimetric inequalities in the grid. Combinatorica 11(4), 299–314 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bombieri, E.: Regularity theory for almost minimal currents. Arch. Ration. Mech. Anal. 78(2), 99–130 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  23. Borell, C.: Convex measures on locally convex spaces. Ark. Mat. 12, 239–252 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  24. Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Burago, Y.D., Zalgaller, V.A.: Geometric Inequalities. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285. Springer, Berlin (1988)

    MATH  Google Scholar 

  26. Buser, P.: A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15(2), 213–230 (1982)

    MATH  MathSciNet  Google Scholar 

  27. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195–199. Princeton Univ. Press, Princeton (1970)

    Google Scholar 

  28. Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146(2), 219–257 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport. Ann. Fac. Sci. Toulouse Math. (6) 15(4), 613–635 (2006)

    MATH  MathSciNet  Google Scholar 

  30. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge Univ. Press, Cambridge (1989)

    MATH  Google Scholar 

  31. Federer, H.: Geometric Measure Theory. Die Grundlehren der Mathematischen Wissenschaften, Band 153. Springer, New York (1969)

    MATH  Google Scholar 

  32. Federer, H., Fleming, W.H.: Normal and integral currents. Ann. Math. (2) 72, 458–520 (1960)

    Article  MathSciNet  Google Scholar 

  33. Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton Univ. Press, Princeton (1995)

    MATH  Google Scholar 

  34. Gallot, S.: Inégalités isopérimétriques et analytiques sur les variétés riemanniennes. Astérisque 163–164, 31–91 (1988). On the geometry of differentiable manifolds (Rome, 1986)

    Google Scholar 

  35. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol 80. Birkhäuser, Basel (1984)

    MATH  Google Scholar 

  36. Gonzalez, E., Massari, U., Tamanini, I.: On the regularity of boundaries of sets minimizing perimeter with a volume constraint. Indiana Univ. Math. J. 32(1), 25–37 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  37. Grigor’yan, A.: Isoperimetric inequalities and capacities on Riemannian manifolds. In: The Maz’ya Anniversary Collection, vol. 1, Rostock, 1998. Oper. Theory Adv. Appl., vol 109, pp. 139–153. Birkhäuser, Basel (1999)

    Google Scholar 

  38. Gromov, M.: Paul Lévy isoperimetric inequality. Preprint, I.H.E.S. (1980)

  39. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics, vol. 152. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  40. Gromov, M., Milman, V.D.: A topological application of the isoperimetric inequality. Am. J. Math. 105(4), 843–854 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  41. Gromov, M., Milman, V.D.: Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces. Compos. Math. 62(3), 263–282 (1987)

    MATH  MathSciNet  Google Scholar 

  42. Grüter, M.: Boundary regularity for solutions of a partitioning problem. Arch. Ration. Mech. Anal. 97(3), 261–270 (1987)

    Article  MATH  Google Scholar 

  43. Hadwiger, H.: Gitterperiodische Punktmengen und Isoperimetrie. Monatsh. Math. 76, 410–418 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  44. Hsu, E.P.: Multiplicative functional for the heat equation on manifolds with boundary. Mich. Math. J. 50(2), 351–367 (2002)

    Article  MATH  Google Scholar 

  45. Johnson, W.B., Schechtman, G., Zinn, J.: Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab. 13(1), 234–253 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  46. Kahane, J.-P.: Some Random Series of Functions, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 5. Cambridge Univ. Press, Cambridge (1985)

    MATH  Google Scholar 

  47. Kannan, R., Lovász, L., Simonovits, M.: Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13(3–4), 541–559 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  48. Klartag, B.: A Berry-Esseen type inequality for convex bodies with an unconditional basis. Probab. Theory Relat. Fields (to appear). arXiv:0705.0832 (2007)

  49. Klartag, B.: A central limit theorem for convex sets. Invent. Math. 168, 91–131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  50. Klartag, B.: Power-law estimates for the central limit theorem for convex sets. J. Funct. Anal. 245, 284–310 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  51. Kuwert, E.: Note on the isoperimetric profile of a convex body. In: Geometric Analysis and Nonlinear Partial Differential Equations, pp. 195–200. Springer, Berlin (2003)

    Google Scholar 

  52. Latała, R., Wojtaszczyk, J.O.: On the infimum convolution inequality. Stud. Math. 189(2), 147–187 (2008)

    Article  MATH  Google Scholar 

  53. Ledoux, M.: A simple analytic proof of an inequality by P. Buser. Proc. Am. Math. Soc. 121(3), 951–959 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  54. Ledoux, M.: The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse Math. (6) 9(2), 305–366 (2000)

    MATH  MathSciNet  Google Scholar 

  55. Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89. Am. Math. Soc., Providence (2001)

    MATH  Google Scholar 

  56. Ledoux, M.: Spectral gap, logarithmic Sobolev constant, and geometric bounds. In: Surveys in Differential Geometry, vol. IX, pp. 219–240. Int. Press, Somerville (2004)

    Google Scholar 

  57. Lee, M.: Isoperimetric regions in spaces. Bachelor’s degree thesis, Williams College, Williamstown, MA (2006)

  58. Li, P., Yau, S.T.: Estimates of eigenvalues of a compact Riemannian manifold. In: Geometry of the Laplace operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979. Proc. Sympos. Pure Math., XXXVI, pp. 205–239. Am. Math. Soc., Providence (1980)

    Google Scholar 

  59. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  60. Maz’ja, V.G.: Classes of domains and imbedding theorems for function spaces. Dokl. Acad. Nauk SSSR 3, 527–530 (1960). Engl. transl. Sov. Math. Dokl. 1, 882–885 (1961)

    MathSciNet  Google Scholar 

  61. Maz’ja, V.G.: p-conductivity and theorems on imbedding certain functional spaces into a C-space. Dokl. Akad. Nauk SSSR 140, 299–302 (1961). Engl. transl. Sov. Math. Dokl. 2, 1200–1203 (1961)

    MathSciNet  Google Scholar 

  62. Maz’ja, V.G.: The negative spectrum of the higher-dimensional Schrödinger operator. Dokl. Akad. Nauk SSSR 144, 721–722 (1962). Engl. transl. Sov. Math. Dokl. 3, 808–810 (1962)

    MathSciNet  Google Scholar 

  63. Maz’ja, V.G.: Sobolev Spaces. Springer Series in Soviet Mathematics. Springer, Berlin (1985)

    MATH  Google Scholar 

  64. Milman, E.: On the role of convexity in functional and isoperimetric inequalities. Proc. Lond. Math. Soc. (2008). doi:10.1112./plms/pdn045. arxiv.org/abs/0804.0453

    Google Scholar 

  65. Milman, E.: Uniform tail-decay of Lipschitz functions implies Cheeger’s isoperimetric inequality under convexity assumptions. C. R. Math. Acad. Sci. Paris 346, 989–994 (2008)

    MATH  MathSciNet  Google Scholar 

  66. Milman, E., Sodin, S.: An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies. J. Funct. Anal. 254(5), 1235–1268 (2008). arxiv.org/abs/math/0703857

    Article  MATH  MathSciNet  Google Scholar 

  67. Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite-Dimensional Normed Spaces. Lecture Notes in Math., vol. 1200. Springer, Berlin (1986). With an appendix by M. Gromov

    MATH  Google Scholar 

  68. Morgan, F.: Geometric Measure Theory (a Beginner’s Guide), 3rd edn. Academic, San Diego (2000)

    MATH  Google Scholar 

  69. Morgan, F.: Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans. Am. Math. Soc. 355(12), 5041–5052 (2003) (electronic)

    Article  MATH  Google Scholar 

  70. Morgan, F.: Manifolds with density. Not. Am. Math. Soc. 52(8), 853–858 (2005)

    MATH  Google Scholar 

  71. Morgan, F.: The Levy-Gromov isoperimetric inequality in convex manifolds with boundary. Manuscript, arXiv:0710.1975 (2007)

  72. Morgan, F.: Geometric Measure Theory (a Beginner’s Guide), 4th edn. (to appear)

  73. Morgan, F., Johnson, D.L.: Some sharp isoperimetric theorems for Riemannian manifolds. Indiana Univ. Math. J. 49(3), 1017–1041 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  74. Muckenhoupt, B.: Hardy’s inequality with weights. Stud. Math. 44, 31–38 (1972)

    MATH  MathSciNet  Google Scholar 

  75. Paley, R.E.A.C., Zygmund, A.: A note on analytic functions in the unit circle. Proc. Camb. Philos. Soc. 28, 266–272 (1932)

    Article  Google Scholar 

  76. Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  77. Qian, Z.: A gradient estimate on a manifold with convex boundary. Proc. R. Soc. Edinb. Sect. A 127(1), 171–179 (1997)

    MATH  Google Scholar 

  78. Ros, A.: The isoperimetric problem. In: Global Theory of Minimal Surfaces. Clay Math. Proc., vol. 2, pp. 175–209. Am. Math. Soc., Providence (2005)

    Google Scholar 

  79. Schechtman, G., Zinn, J.: Concentration on the l n p ball. In: Geometric Aspects of Functional Analysis. Lecture Notes in Math., vol. 1745, pp. 245–256. Springer, Berlin (2000)

    Chapter  Google Scholar 

  80. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge Univ. Press, Cambridge (1993)

    MATH  Google Scholar 

  81. Sodin, S.: An isoperimetric inequality on the p balls. Ann. Inst. H. Poincaré Probab. Stat. 44(2), 362–373 (2008)

    Article  MathSciNet  Google Scholar 

  82. Sternberg, P., Zumbrun, K.: On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint. Commun. Anal. Geom. 7(1), 199–220 (1999)

    MATH  MathSciNet  Google Scholar 

  83. Sturm, K.-T.: On the geometry of metric measure spaces I. Acta Math. 196(1), 65–131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  84. Wang, F.-Y.: Gradient estimates and the first Neumann eigenvalue on manifolds with boundary. Stoch. Process. Appl. 115(9), 1475–1486 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Milman.

Additional information

Supported by NSF under agreement #DMS-0635607.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milman, E. On the role of convexity in isoperimetry, spectral gap and concentration. Invent. math. 177, 1–43 (2009). https://doi.org/10.1007/s00222-009-0175-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0175-9

Keywords

Navigation