Skip to main content
Log in

Almost global wellposedness of the 2-D full water wave problem

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We consider the problem of global in time existence and uniqueness of solutions of the 2-D infinite depth full water wave equation. It is known that this equation has a solution for a time period [0,T/ε] for initial data of the form ε Ψ, where T depends only on Ψ. In this paper, we show that for such data there exists a unique solution for a time period [0,e T/ε]. This is achieved by better understandings of the nature of the nonlinearity of the full water wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrose, D., Masmoudi, N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58(10), 1287–1315 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beale, T., Hou, T., Lowengrub, J.: Growth rates for the linearized motion of fluid interfaces away from equilibrium. Commun. Pure Appl. Math. 46(9), 1269–1301 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Birkhoff, G.: Helmholtz and Taylor instability. Proc. Symp. Appl. Math. XIII, 55–76

  4. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Math., vol. 10. AMS, Providence (2003)

    MATH  Google Scholar 

  5. Christianson, H., Hur, V., Staffilani, G.: Local smoothing effects for the water wave problem with surface tension. Preprint arXiv:0809.4515 (Sept. 2008)

  6. Christodoulou, D., Lindblad, H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Coutand, D., Shkoller, S.: Wellposedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Coifman, R., Meyer, Y.: Au delá des opérateurs pseudodifférentials. Asterisque 57 (1978)

  9. Coifman, R., McIntosh, A., Meyer, Y.: Líntegrale de Cauchy definit un operateur borne sur L 2 pour les courbes lipschitziennes. Ann. Math. 116, 361–387 (1982)

    Article  MathSciNet  Google Scholar 

  10. Coifman, R., David, G., Meyer, Y.: La solution des conjectures de Calderón. Adv. Math. 48, 144–148 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Commun. Partial Differ. Equ. 10(8) 787–1003 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. David, G., Journé, J.-L., Semmes, S.: Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. Rev. Mat. Iberoam. 1, 1–56 (1985)

    MATH  Google Scholar 

  13. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Berlin (1997)

    MATH  Google Scholar 

  14. Iguchi, T.: Well-posedness of the initial value problem for capillary-gravity waves. Funkc. Ekvac. 44(2), 219–241 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Iguchi, T.: A shallow water approximation for water waves. Preprint

  16. Journé, J.-L.: Calderón-Zygmund Operators, Pseudo-Differential Operators, and the Cauchy Integral of Calderón. Lecture Notes in Math., vol. 994. Springer, Berlin (1983)

    MATH  Google Scholar 

  17. Kano, T., Nishida, T.: Sur les ondes de surface de l’eau avec une justification mathematique des equations des ondes en eau peu profonde. J. Math. Kyoto Univ. 19(2), 335–370 (1979)

    MATH  MathSciNet  Google Scholar 

  18. Kano, T., Nishida, T.: A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves. Osaka J. Math. 23(2), 389–413 (1986)

    MATH  MathSciNet  Google Scholar 

  19. Kenig, C.: Elliptic boundary value problems on Lipschitz domains. In: Stein, E.M. (ed.) Beijing Lectures in Harmonic Analysis, pp. 131–183. Princeton Univ. Press, Princeton (1986)

    Google Scholar 

  20. Klainerman, S.: Weighted L and L 1 estimates for solutions to the classical wave equation in three space dimensions. Commun. Pure Appl. Math. 37, 269–288 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Klainermanm, S.: Uniform decay and the Lorentz invariance of the classical wave equation. Commun. Pure Appl. Math. 38, 321–332 (1985)

    Article  Google Scholar 

  22. Klainerman, S.: Global existence of small amplitude solutions to nonlinear Klein-Gordan equations in four space-time dimensions. Commun. Pure Appl. Math. 38, 631–641 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  23. Klainerman, S.: The null condition and global existence to nonlinear wave equations. Lect. Appl. Math. 23, 293–325 (1986)

    MathSciNet  Google Scholar 

  24. Lannes, D.: Well-posedness of the water-wave equations. J. Am. Math. Soc. 18, 605–654 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lannes, D., Alvarez-Samaniego, B.: Large time existence for 3D water-waves and asymptotics. Invent. Math. 171(3), 485–541 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162(1), 109–194 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nalimov, V.I.: The Cauchy-Poisson problem. Dyn. Splosh. Sredy 18, 104–210 (1974) (in Russian)

    MathSciNet  Google Scholar 

  28. Ogawa, M., Tani, A.: Free boundary problem for an incompressible ideal fluid with surface tension. Math. Models Methods Appl. Sci. 12(12), 1725–1740 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schneider, G., Wayne, E.: The long wave limit for the water wave problem I. The case of zero surface tension. Commun. Pure. Appl. Math. 53(12), 1475–1535 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Shatah, J.: Normal forms and quadratic nonlinear Klein-Gordon equations. Commun. Pure Appl. Math. 38, 685–696 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. Shatah, J., Zeng, C.: Geometry and a priori estimates for free boundary problems of the Euler’s equation. Commun. Pure Appl. Math. 61(5), 698–744 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Simon, J.C.H.: A wave operator for a non-linear Klein-Gordon equation. Lett. Math. Phys. 7, 387–398 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  33. Simon, J.C.H., Taflin, E.: The Cauchy problem for non-linear Klein-Gordon equations. Commun. Math. Phys. 152, 433–478 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sogge, C.: Fourier Integrals in Classical Analysis. Cambridge Univ. Press, Cambridge (1993)

    MATH  Google Scholar 

  35. Strauss, W.: Nonlinear Wave Equations. CBMS, vol. 73. AMS, Providence (1989)

    MATH  Google Scholar 

  36. Taylor, G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I. Proc. R. Soc. Lond. A 201, 192–196 (1950)

    Article  MATH  Google Scholar 

  37. Verchota, G.C.: Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains. Thesis, University of Minnesota (1982). J. Funct. Anal. 59, 572–611 (1984)

    Google Scholar 

  38. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2D. Invent. Math. 130, 39–72 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3D. J. Am. Math. Soc. 12(2), 445–495 (1999)

    Article  MATH  Google Scholar 

  40. Yosihara, H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. RIMS Kyoto 18, 49–96 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhang, P., Zhang, Z.: On the free boundary problem of 3-D incompressible Euler equations. Commun. Pure Appl. Math. 61(7), 877–940 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sijue Wu.

Additional information

Financial support provided in part by NSF grant DMS-0400643.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S. Almost global wellposedness of the 2-D full water wave problem. Invent. math. 177, 45–135 (2009). https://doi.org/10.1007/s00222-009-0176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0176-8

Keywords

Navigation