Skip to main content
Log in

On the number of zeros of Abelian integrals

A constructive solution of the infinitesimal Hilbert sixteenth problem

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that the number of limit cycles generated from nonsingular energy level ovals (periodic trajectories) in a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing infinitesimal Hilbert 16th problem.

The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection defined over ℚ (the Gauss-Manin connection) with a quasiunipotent monodromy group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps. Monodromy and Asymptotics of Integrals, vol. II. Birkhäuser, Boston (1988). MR 89g:58024

    MATH  Google Scholar 

  2. Arnold, V.I.: Arnold’s Problems. Springer, Berlin (2004). Translated and revised edition of the 2000 Russian original, with a preface by V. Philippov, A. Yakivchik and M. Peters. MR2078115 (2005c:58001)

    MATH  Google Scholar 

  3. Bobieński, M., Mardešić, P.: Pseudo-Abelian integrals along Darboux cycles. Proc. Lond. Math. Soc. (3) 97(3), 669–688 (2008). MR2448243 (2009f:34082)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bogdanov, R.I.: Bifurcations of a limit cycle of a certain family of vector fields on the plane. Trudy Sem. Petrovsk. (2), 23–35 (1976). MR 56 #1363

  5. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, vol. 10. Springer, Berlin (2003). MR 2004g:14064

    MATH  Google Scholar 

  6. Brieskorn, E.: Die Monodromie der isolierten Singularitäten von Hyperflächen. Manuscr. Math. 2, 103–161 (1970). MR 42 #2509

    Article  MATH  MathSciNet  Google Scholar 

  7. Basu, S., Vorobjov, N.: On the number of homotopy types of fibres of a definable map. J. Lond. Math. Soc. (2) 76(3), 757–776 (2007). MR2377123

    Article  MATH  MathSciNet  Google Scholar 

  8. Binyamini, G., Yakovenko, S.: Polynomial bounds for oscillation of solutions of Fuchsian systems. Ann. Inst. Fourier 59(7), 2891–2926 (2009). Available as Preprint arXiv:0808.2950 [math.DS]

    MATH  Google Scholar 

  9. Caubergh, M., Dumortier, F., Roussarie, R.: Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Commun. Pure Appl. Anal. 6(1), 1–21 (2007). MR2276327 (2008f:34066)

    MATH  MathSciNet  Google Scholar 

  10. Christopher, C., Li, C.: Limit Cycles of Differential Equations. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser, Basel (2007). MR2325099 (2008d:34001)

    MATH  Google Scholar 

  11. Clemens, C.H. Jr.: Picard–Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities. Trans. Am. Math. Soc. 136, 93–108 (1969). MR0233814 (38 #2135)

    Article  MATH  MathSciNet  Google Scholar 

  12. de la Valleé Poussin, C.: Sur l’équation différentielle linéaire du second ordre. détermination d’une intégrale par deux valeurs assignées. extension aux équations d’ordre n. J. Math. Pures Appl. 8, 125–144 (1929)

    Google Scholar 

  13. Dumortier, F., Roussarie, R.: Abelian integrals and limit cycles. J. Differ. Eq. 227(1), 116–165 (2006). MR2233957 (2007c:34049)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fulton, W., MacPherson, R.: A compactification of configuration spaces. Ann. Math. (2) 139(1), 183–225 (1994). MR1259368 (95j:14002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Françoise, J.P.: Successive derivatives of a first return map, application to the study of quadratic vector fields. Ergodic Theory Dyn. Syst. 16(1), 87–96 (1996). MR1375128 (97a:58131)

    Article  MATH  Google Scholar 

  16. Gabrièlov, A.M.: Projections of semianalytic sets. Funct. Anal. Appl. 2(4), 18–30 (1968). MR0245831 (39 #7137)

    Google Scholar 

  17. Gavrilov, L.: Petrov modules and zeros of Abelian integrals. Bull. Sci. Math. 122(8), 571–584 (1998). MR 99m:32043

    Article  MATH  MathSciNet  Google Scholar 

  18. Gavrilov, L.: Abelian integrals related to Morse polynomials and perturbations of plane Hamiltonian vector fields. Ann. Inst. Fourier (Grenoble) 49(2), 611–652 (1999). MR 1 697 374

    MATH  MathSciNet  Google Scholar 

  19. Gavrilov, L.: Higher order Poincaré–Pontryagin functions and iterated path integrals. Ann. Fac. Sci. Toulouse Math. (6) 14(4), 663–682 (2005). MR2188587 (2006i:34074)

    MATH  MathSciNet  Google Scholar 

  20. Gavrilov, L., Iliev, I.D.: The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields. Am. J. Math. 127(6), 1153–1190 (2005). MR2183522 (2006h:34065)

    Article  MATH  MathSciNet  Google Scholar 

  21. Glutsyuk, A., Ilyashenko, Yu.: The restricted infinitesimal Hilbert 16th problem. Dokl. Akad. Nauk 407(2), 154–159 (2006). MR2348308

    MathSciNet  Google Scholar 

  22. Glutsyuk, A., Ilyashenko, Yu.: Restricted version of the infinitesimal Hilbert 16th problem. Mosc. Math. J. 7(2), 281–325 (2007) and p. 351. MR2337884

    MATH  MathSciNet  Google Scholar 

  23. Glutsyuk, A.: Upper bounds of topology of complex polynomials in two variables. Mosc. Math. J. 5(4), 781–828 (2005) and p. 972. MR2266460

    MATH  MathSciNet  Google Scholar 

  24. Glutsyuk, A.: An explicit formula for period determinant. Ann. Inst. Fourier (Grenoble) 56(4), 887–917 (2006). MR2266882 (2007f:32034)

    MATH  MathSciNet  Google Scholar 

  25. Gavrilov, L., Novikov, D.: On the finite cyclicity of open period annuli. Preprint arXiv:0807.0512, pp. 1–22 (2008)

  26. Grigoriev, A.: Singular perturbations and zeros of Abelian integrals. Ph. D. thesis, Weizmann Institute of Science (Rehovot), December 2001

  27. Grigoriev, A.: Uniform asymptotic bound on the number of zeros of Abelian integrals. Preprint arXiv:math.DS/0305248 (2003)

  28. Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. (NS) 37(4), 407–436 (2000). Reprinted from Bull. Am. Math. Soc. 8, 437–479 (1902)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ilyashenko, Yu.S.: Пример уравнении вида dw/dz=−R z /R w имеющих счетное число предельных циклов и сколь угодно большой жанр по Петровскому–Ландису. Mat. Sb. (NS) 80(122), 388–404 (1969). (Engl. translations: An example of equations dw/dz=P n  (z, w)/Q n  (z, w) having a countable number of limit cycles and arbitrarily high Petrovskiĭ-Landis genus). MR0259239 (41 #3881)

    Google Scholar 

  30. Ilyashenko, Yu.S.: Возникновение предельных циклов про возмущении уравнения dw/dz=−R z /R w , gde R(z,w)—многочлен. Mat. Sb. (NS) 78(120), 360–373 (1969), no. 3. (Engl. translation: Appearance of limit cycles by perturbation of the equation dw/dz=−R z /R w , where R(z,w) is a polynomial)

    Google Scholar 

  31. Ilyashenko, Yu.S.: The multiplicity of limit cycles arising by a perturbation of a Hamilton equation of the class dw/dz=P 2/Q 1, in real and complex domains. Tr. Semin. Im. I.G. Petrovskogo 3, 49–60 (1978). (Russian)

    Google Scholar 

  32. Ilyashenko, Yu.S.: Centennial history of Hilbert’s 16th problem. Bull. Am. Math. Soc. (NS) 39(3), 301–354 (2002). (electronic). MR 1 898 209

    Article  MATH  MathSciNet  Google Scholar 

  33. Ilyashenko, Yu.S.: The qualitative theory of differential equations in the plane. In: Mathematical Events of the Twentieth Century, pp. 101–132. Springer, Berlin (2006). MR2182781 (2006i:34002)

    Chapter  Google Scholar 

  34. Ilyashenko, Yu.S.: Some open problems in real and complex dynamical systems. Nonlinearity 21, T101–T107 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ilyashenko, Yu.S., Yakovenko, S.: Double exponential estimate for the number of zeros of complete Abelian integrals and rational envelopes of linear ordinary differential equations with an irreducible monodromy group. Invent. Math. 121(3), 613–650 (1995). MR 96g:58157

    Article  MathSciNet  Google Scholar 

  36. lyashenko, Yu., Yakovenko, S.: Lectures on Analytic Differential Equations. Graduate Studies in Mathematics, vol. 86. American Mathematical Society, Providence (2008). MR2363178

    Google Scholar 

  37. Jebrane, M.A., Mourtada, A.: Cyclicité finie des lacets doubles non triviaux. Nonlinearity 7(5), 1349–1365 (1994). MR1294547 (95h:58110)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kashiwara, M.: Quasi-unipotent constructible sheaves. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 757–773 (1982). MR656052 (84f:32009)

    MathSciNet  Google Scholar 

  39. Khovanskiĭ, A.: Real analytic manifolds with the property of finiteness, and complex Abelian integrals. Funktsional. Anal. Prilozhen. 18(2), 40–50 (1984). MR 86a:32024

    Google Scholar 

  40. Khovanskiĭ, A.: Fewnomials. American Mathematical Society, Providence (1991). MR 92h:14039

    MATH  Google Scholar 

  41. Looijenga, E.: The complement of the bifurcation variety of a simple singularity. Invent. Math. 23, 105–116 (1974). MR 54 #10661

    Article  MATH  MathSciNet  Google Scholar 

  42. Mardešić, P.: An explicit bound for the multiplicity of zeros of generic Abelian integrals. Nonlinearity 4(3), 845–852 (1991). MR1124336 (92h:58163)

    Article  MathSciNet  Google Scholar 

  43. Milnor, J.: Singular points of complex hypersurfaces. Annals of Mathematics Studies, No. 61. Princeton University Press, Princeton (1968). MR 39 #969

    MATH  Google Scholar 

  44. Moura, C.: Bounds for the vanishing order for solutions of a linear differential system. J. Dyn. Control Syst. 9(1), 73–88 (2003). MR 1956445

    Article  MATH  MathSciNet  Google Scholar 

  45. Novikov, D.: Systems of linear ordinary differential equations with bounded coefficients may have very oscillating solutions. Proc. Am. Math. Soc. 129(12), 3753–3755 (2001). (electronic). MR 1 860 513

    Article  MATH  Google Scholar 

  46. Novikov, D.: On limit cycles appearing by polynomial perturbation of Darbouxian integrable systems. Geom. Funct. Anal. 18(5), 1750–1773 (2009). MR2481741

    Article  MathSciNet  Google Scholar 

  47. Novikov, D., Yakovenko, S.: Simple exponential estimate for the number of real zeros of complete Abelian integrals. Ann. Inst. Fourier (Grenoble) 45(4), 897–927 (1995). MR 97b:14053

    MATH  MathSciNet  Google Scholar 

  48. Novikov, D., Yakovenko, S.: Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems. Electron. Res. Announc. Am. Math. Soc. 5, 55–65 (1999). (electronic). MR 2000a:34065

    Article  MATH  MathSciNet  Google Scholar 

  49. Novikov, D., Yakovenko, S.: Trajectories of polynomial vector fields and ascending chains of polynomial ideals. Ann. Inst. Fourier (Grenoble) 49(2), 563–609 (1999). MR 2001h:32054

    MATH  MathSciNet  Google Scholar 

  50. Novikov, D., Yakovenko, S.: Redundant Picard–Fuchs system for Abelian integrals. J. Differ. Eq. 177(2), 267–306 (2001). MR 1 876 646

    Article  MATH  MathSciNet  Google Scholar 

  51. Novikov, D., Yakovenko, S.: Quasialgebraicity of Picard–Vessiot fields. Mosc. Math. J. 3(2), 551–591 (2003)

    MATH  MathSciNet  Google Scholar 

  52. Petrov, G.S.: Nonoscillation of elliptic integrals. Funktsional. Anal. Prilozhen. 24(3), 45–50 (1990), and p. 96. MR 92c:33036

    Google Scholar 

  53. Petrov, G.S.: On the nonoscillation of elliptic integrals. Funktsional. Anal. Prilozhen. 31(4), 47–51 (1997), and p. 95. MR 99a:34087

    Google Scholar 

  54. Petrovskiĭ, I.G., Landis, E.M.: On the number of limit cycles of the equation dy/dx=P(x,y)/Q(x,y), where P and Q are polynomials of 2nd degree. Mat. Sb. (NS) 37(79), 209–250 (1955). MR 17,364d

    Google Scholar 

  55. Petrovskiĭ, I.G., Landis, E.M.: On the number of limit cycles of the equation dy/dx=P(x,y)/Q(x,y), where P and Q are polynomials. Mat. Sb. (NS) 43(85), 149–168 (1957). MR 19,746c

    Google Scholar 

  56. Petrovskiĭ, I.G., Landis, E.M.: Corrections to the articles “On the number of limit cycles of the equations dy/dx=P(x, y)/Q(x, y), where P and Q are polynomials of 2nd degree” and “On the number of limit cycles of the equation dy/dx=P(x, y)/Q(x, y), where P and Q are polynomials”. Mat. Sb. (NS) 48(90), 253–255 (1959). MR 23 #A1099

    Google Scholar 

  57. Roussarie, R.: On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields. Bol. Soc. Brasil. Mat. 17(2), 67–101 (1986). MR 88i:34061

    Article  MATH  MathSciNet  Google Scholar 

  58. Roussarie, R.: Cyclicité finie des lacets et des points cuspidaux. Nonlinearity 2(1), 73–117 (1989). MR980858 (90m:58169)

    Article  MATH  MathSciNet  Google Scholar 

  59. Roitman, M., Yakovenko, S.: On the number of zeros of analytic functions in a neighborhood of a Fuchsian singular point with real spectrum. Math. Res. Lett. 3(3), 359–371 (1996). MR 97d:34004

    MATH  MathSciNet  Google Scholar 

  60. Varchenko, A.N.: Estimation of the number of zeros of an Abelian integral depending on a parameter, and limit cycles. Funktsional. Anal. Prilozhen. 18(2), 14–25 (1984). MR 85g:32033

    MATH  MathSciNet  Google Scholar 

  61. Yakovenko, S.: Real zeros of a class of Abelian integrals arising in bifurcation theory. Methods of the qualitative theory of differential equations (Russian), Gor′kov. Gos. Univ., Gorki (1984). Translated in Selecta Math. Soviet. 9(3), 255–262, pp. 175–185, 203–204 (1990). MR866699 (88b:58100)

  62. Yakovenko, S.: A geometric proof of the Bautin theorem. In: Concerning the Hilbert 16th Problem, pp. 203–219. Am. Math. Soc., Providence (1995). MR 96j:34056

    Google Scholar 

  63. Yakovenko, S.: On functions and curves defined by ordinary differential equations. In: The Arnoldfest, Toronto, ON, 1997, pp. 497–525. Am. Math. Soc., Providence (1999). MR 2001k:34065

    Google Scholar 

  64. Yakovenko, S.: Bounded decomposition in the Brieskorn lattice and Pfaffian Picard–Fuchs systems for Abelian integrals. Bull. Sci. Math. 126(7), 535–554 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  65. Yakovenko, S.: Quantitative theory of ordinary differential equations and the tangential Hilbert 16th problem. In: On Finiteness in Differential Equations and Diophantine Geometry. CRM Monogr. Ser., vol. 24, pp. 41–109. Am. Math. Soc., Providence (2005). MR2180125 (2006g:34062)

    Google Scholar 

  66. Yakovenko, S.: Oscillation of linear ordinary differential equations: on a theorem of A. Grigoriev. J. Dyn. Control Syst. 12(3), 433–449 (2006). MR2233029

    Article  MATH  MathSciNet  Google Scholar 

  67. Żoła̧dek, H.: The Monodromy Group. Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series). Birkhäuser, Basel (2006). [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 67. MR2216496

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Yakovenko.

Additional information

To Yulij Sergeevich Ilyashenko, who discovered this problem 40 years ago, for his 65th birthday with gratitude and admiration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binyamini, G., Novikov, D. & Yakovenko, S. On the number of zeros of Abelian integrals. Invent. math. 181, 227–289 (2010). https://doi.org/10.1007/s00222-010-0244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-010-0244-0

Mathematics Subject Classification (2000)

Navigation