Skip to main content
Log in

Random walks on finite volume homogeneous spaces

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Extending previous results by A. Eskin and G. Margulis, and answering their conjectures, we prove that a random walk on a finite volume homogeneous space is always recurrent as soon as the transition probability has finite exponential moments and its support generates a subgroup whose Zariski closure is semisimple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benoist, Y., Quint, J.-F.: Mesures stationnaires et fermés invariants des espaces homogènes,. C. R. Acad. Sci. 347, 9–13 (2009) and preprint (2009)

    MATH  MathSciNet  Google Scholar 

  2. Benoist, Y., Quint, J.-F.: Lattices in S-adic Lie groups. Preprint (2010)

  3. Benoist, Y., Quint, J.-F.: Stationary measures and invariant subsets of homogeneous spaces (in preparation)

  4. Benoist, Y., Quint, J.-F.: Random walks on semisimple groups (in preparation)

  5. Breuillard, E.: Local limit theorems and equidistribution of random walks on the Heisenberg group. Geom. Funct. Anal. 15, 35–82 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eskin, A., Margulis, G.: Recurrence properties of random walks on finite volume homogeneous manifolds. In: Random Walks and Geometry, pp. 431–444. de Gruiter, Berlin (2004)

    Google Scholar 

  7. Foster, F.: On the stochastic matrices associated with certain queuing processes. Ann. Math. Stat. 24, 355–360 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garland, H., Raghunathan, M.S.: Fundamental domains for lattices in ℝ-rank 1 semisimple Lie groups. Ann. Math. 92, 279–326 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kempf, G.: Instability in invariant theory. Ann. Math. 108, 299–316 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. Margulis, G.: Discrete Subgroups of Semisimple Lie Groups. Springer, Berlin (1991)

    MATH  Google Scholar 

  11. Meyn, S., Tweedie, R.: Markov Chain and Stochastic Stability. Springer, Berlin (1993)

    Google Scholar 

  12. Mumford, D.: Geometric Invariant Theory. Springer, Berlin (1965)

    MATH  Google Scholar 

  13. Nummelin, E.: General Irreducible Markov Chains and Non-negative Operators. Camb. Univ. Press, Cambridge (1984)

    Book  MATH  Google Scholar 

  14. Raghunathan, M.: Discrete Subgroups of Lie Groups. Springer, Berlin (1972)

    MATH  Google Scholar 

  15. Raghunathan, M.: A note on orbits of reductive groups. J. Indian Math. Soc. 38, 65–70 (1974)

    MathSciNet  Google Scholar 

  16. Ratner, M.: Raghunathan’s conjectures for p-adic Lie groups. Int. Math. Res. Notices 141–146 (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Francois Quint.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benoist, Y., Quint, JF. Random walks on finite volume homogeneous spaces. Invent. math. 187, 37–59 (2012). https://doi.org/10.1007/s00222-011-0328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-011-0328-5

Keywords

Navigation