Skip to main content
Log in

The structure of 2D semi-simple field theories

  • Published:
Inventiones mathematicae Aims and scope

Abstract

I classify the cohomological 2D field theories based on a semi-simple complex Frobenius algebra A. They are controlled by a linear combination of κ-classes and by an extension datum to the Deligne–Mumford boundary. Their effect on the Gromov–Witten potential is described by Givental’s Fock space formulae. This leads to the reconstruction of Gromov–Witten (ancestor) invariants from the quantum cup-product at a single semi-simple point and the first Chern class of the manifold, confirming Givental’s higher-genus reconstruction conjecture. This in turn implies the Virasoro conjecture for manifolds with semi-simple quantum cohomology. The classification uses the Mumford conjecture, proved by Madsen and Weiss (European Congress of Mathematics, pp. 283–303, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams, L.: Two-dimensional topological quantum field theories and Frobenius algebras. J. Knot Theory Ramif. 5, 569–587 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abrams, L.: The quantum Euler class and the quantum cohomology of the Grassmannians. Isr. J. Math. 117, 335–352 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayer, A.: Semisimple quantum cohomology and blowups. Int. Math. Res. Not. 2004, 2069–2083

  4. Bödigheimer, C.-F., Tillmann, U.: Stripping and splitting decorated mapping class groups. Cohomological methods in homotopy theory, Bellaterra, 1998. Progr. Math., vol. 196, pp. 47–57. Birkhäuser, Basel (2001)

    Google Scholar 

  5. Costello, K.: Topological conformal field theories and Calabi-Yau categories. Adv. Math. 210 (2007)

  6. Ciolli, G.: On the quantum cohomology of some Fano threefolds and a conjecture of Dubrovin. Int. J. Math. 16, 823–839 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coates, T., Givental, A.: Quantum cobordism and formal group laws. In: The Unity of Mathematics. Progr. Math., vol. 244, pp. 155–171. Birkhäuser, Boston (2006)

    Chapter  Google Scholar 

  8. Chen, Y., Kontsevich, M., Schwartz, A.: Symmetries of WDVV equations. Nucl. Phys. B 730, 352–363 (2005)

    Article  MATH  Google Scholar 

  9. Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable systems and Quantum Groups, Montecatini Terme, 1993. Lecture Notes in Math., vol. 1620, pp. 120–348. Springer, Berlin (1996)

    Chapter  Google Scholar 

  10. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory on compact toric manifolds I, II: Preprints, arXiv:0802.1703, 0810.5654

  11. Getzler, E.: Batalin–Vilkovisky algebras and 2-dimensional topological field theories. Commun. Math. Phys. 159, 265–285 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Givental, A.: Semi-simple Frobenius structures in higher genus. Int. Math. Res. Not. 23, 1265–1286 (2001)

    Article  MathSciNet  Google Scholar 

  13. Givental, A.: On the WDVV equation in quantum K-theory. Dedicated to William Fulton on the occasion of his 60th birthday. Mich. Math. J. 48, 295–304 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Givental, A.: Gromov–Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J. 1, 551–568 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Harer, J.L.: Stability of the homology of the mapping class groups of orientable surfaces. Ann. of Math. (2) 121, 215–249 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hertling, C., Manin, Yu.I., Teleman, C.: An update on semisimple quantum cohomology and F-manifolds. Tr. Mat. Inst. Steklova 264, 69–76 (2009); Mnogomernaya Algebraicheskaya Geometriya, translation in Proc. Steklov Inst. Math. 264(1), 62–69 (2009)

    MathSciNet  Google Scholar 

  17. Ivanov, N.V.: Stabilization of the homology of Teichmüller modular groups. Algebra Anal. 1, 110–126 (1989); (Russian) translation in Leningrad Math. J. 1, 675–691 (1990)

    Google Scholar 

  18. Kabanov, A., Kimura, T.: A change of coordinates on the large phase space of quantum cohomology. Commun. Math. Phys. 217, 107–126 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Katzarkov, L., Kontsevich, M., Pantev, T.: Hodge theoretic aspects of mirror symmetry. In: From Hodge theory to integrability and TQFT tt*-geometry. Proc. Sympos. Pure Math., vol. 78, pp. 87–174. Am. Math. Soc., Providence (2008)

    Google Scholar 

  20. Kontsevich, M., Manin, Yu.: Gromov–Witten classes, quantum cohomology, and enumerative geometry. Commun. Math. Phys. 164, 525–562 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kontsevich, M., Manin, Yu.: Relations between the correlators of the topological sigma-model coupled to gravity. Commun. Math. Phys. 196, 385–398 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Looijenga, E.: Stable cohomology of the mapping class group with symplectic coefficients and of the universal Abel-Jacobi map. J. Algebr. Geom. 5, 135–150 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Lee, Y.-P., Pandharipande, R.: Frobenius Manifolds, Gromov–Witten Theory and Virasoro Constraints. Book in preparation. http://www.math.utah.edu/%7Eyplee/research/#publications

  24. Manin, Yu.: Frobenius Manifolds, Quantum Cohomology and Moduli Spaces. Am. Math. Soc., Providence (1999)

    MATH  Google Scholar 

  25. Madsen, I., Tillmann, U.: The stable mapping class group and \(Q(\mathbb{CP}^{\infty}_{+})\). Invent. Math. 145, 509–544 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Markl, M., Merkulov, S., Shadrin, S.: Wheeled PROPs, graph complexes and the master equation. J. Pure Appl. Algebra 213, 496–535 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Madsen, I., Weiss, M.: The stable mapping class group and stable homotopy theory. In: European Congress of Mathematics, pp. 283–307. Eur. Math. Soc., Zürich (2005)

    Google Scholar 

  28. Manin, Yu., Zograf, P.: Invertible cohomological field theories and Weil–Petersson volumes. Ann. Inst. Fourier 50, 519–535 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Segal, G.B.: Topological field theory. Notes of Lectures at Stanford University (1998), http://www.cgtp.duke.edu/ITP99/segal

  30. Sullivan, D.: Lectures on string topology (AIM 2005, Morelia 2006). String Topology: Background and Present State. arXiv:0710.4141

  31. Teleman, C.: Topological field theories in 2 dimensions. In: European Congress of Mathematics, pp. 197–210. Eur. Math. Soc., Zürich (2010)

    Google Scholar 

  32. Tillmann, U.: On the homotopy of the stable mapping class group. Invent. Math. 130, 257–275 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Witten, E.: Topological Quantum Field theory. Commun. Math. Phys. 117, 353–386 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Teleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teleman, C. The structure of 2D semi-simple field theories. Invent. math. 188, 525–588 (2012). https://doi.org/10.1007/s00222-011-0352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-011-0352-5

Keywords

Navigation