Skip to main content
Log in

A notion of geometric complexity and its application to topological rigidity

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We introduce a geometric invariant, called finite decomposition complexity (FDC), to study topological rigidity of manifolds. We prove for instance that if the fundamental group of a compact aspherical manifold M has FDC, and if N is homotopy equivalent to M, then M×ℝn is homeomorphic to N×ℝn, for n large enough. This statement is known as the stable Borel conjecture. On the other hand, we show that the class of FDC groups includes all countable subgroups of GL(n,K), for any field K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alperin, R., Shalen, P.: Linear groups of finite cohomological dimension. Invent. Math. 66(1), 89–98 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartels, A.: Squeezing and higher algebraic K-theory. K-Theory 28(1), 19–37 (2003)

    Google Scholar 

  3. Bartels, A., Lück, W.: The Borel conjecture for hyperbolic and CAT(0)-groups. arXiv:0901.0442v1 (2009)

  4. Bell, G., Dranishnikov, A.: A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory. arXiv:math.GR/0407431 (2004)

  5. Bartels, A., Rosenthal, D.: On the K-theory of groups with finite asymptotic dimension. J. Reine Angew. Math. 612, 35–57 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlsson, G., Goldfarb, B.: The integral K-theoretic Novikov conjecture for groups with finite asymptotic dimension. Invent. Math. 157(2), 405–418 (2004)

    Article  MathSciNet  Google Scholar 

  7. Carlsson, G., Pedersen, E.: Controlled algebra and the Novikov conjectures for K- and L-theory. Topology 34(3), 731–758 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, S., Ferry, S., Yu, G.: Bounded rigidity of manifolds and asymptotic dimension growth. K-Theory 1(1), 129–144 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Davis, M.: Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. Math. (2) 117(2), 293–324 (1983)

    Article  MATH  Google Scholar 

  10. Dranishnikov, A., Ferry, S., Weinberger, S.: Large Riemannian manifolds which are flexible. Ann. Math. (2) 157(3), 919–938 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dranishnikov, A., Smith, J.: Asymptotic dimension of discrete groups. Fundam. Math. 189(1), 27–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Farrell, F.T., Hsiang, W.C.: On Novikov’s conjecture for nonpositively curved manifolds. Ann. Math. (2) 113(1), 199–209 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farrell, T., Jones, L.: A topological analogue of Mostow’s rigidity theorem. J. Am. Math. Soc. 2(2), 257–370 (1989)

    MathSciNet  MATH  Google Scholar 

  14. Farrell, T., Jones, L.: Classical Aspherical Manifolds. CBMS Regional Conference Series in Mathematics, vol. 75, Am. Math. Soc., Providence (1990). Published for the Conference Board of the Mathematical Sciences, Washington, DC

    MATH  Google Scholar 

  15. Farrell, T., Jones, L.: Topological rigidity for compact non-positively curved manifolds. In: Differential Geometry: Riemannian Geometry, Los Angeles, CA, 1990. Proc. Sympos. Pure Math., Part 3, vol. 54, pp. 229–274. Am. Math. Soc., Providence (1993)

    Google Scholar 

  16. Farrell, T., Jones, L.: Rigidity for aspherical manifolds with π 1GL m (R). Asian J. Math. 2(2), 215–262 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Ferry, S., Pedersen, E.: Epsilon surgery theory. In: Novikov Conjectures, Index Theorems and Rigidity, vol. 2, Oberwolfach, 1993. London Math. Soc. Lecture Note Ser., vol. 227, pp. 167–226. Cambridge Univ. Press, Cambridge (1995)

    Chapter  Google Scholar 

  18. Gromov, M.: Asymptotic invariants of infinite groups. In: Geometric Group Theory, vol. 2, Sussex, 1991. London Math. Soc. Lecture Note Ser., vol. 182, pp. 1–295. Cambridge Univ. Press, Cambridge (1993)

    Google Scholar 

  19. Guentner, E., Higson, N., Weinberger, S.: The Novikov conjecture for linear groups. Publ. Math. Inst. Hautes Études Sci. 101, 243–268 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Guentner, E., Tessera, R., Yu, G.: Discrete groups with finite decomposition complexity. Groups Geom. Dyn., in press

  21. Higson, N., Roe, J.: On the coarse Baum-Connes conjecture. In: Novikov Conjectures, Index Theorems and Rigidity, vol. 2, Oberwolfach, 1993. London Math. Soc. Lect. Note Ser., vol. 227, pp. 227–254. Cambridge Univ. Press, Cambridge (1995)

    Google Scholar 

  22. Ji, L.: The integral Novikov conjectures for linear groups containing torsion elements. J. Topol. 1(2), 306–316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirby, R., Siebenmann, L.: Foundational Essays on Topological Manifolds, Smoothings, and Triangulations. Annals of Mathematics Studies, vol. 88, Princeton University Press/University of Tokyo Press, Princeton/Tokyo (1977). With notes by John Milnor and Michael Atiyah

    MATH  Google Scholar 

  24. Lang, S.: Algebra. Addison-Wesley, Reading (1965)

    MATH  Google Scholar 

  25. Matsnev, D.: The Baum-Connes conjecture and proper group actions on affine buildings. math.GT/0703923

  26. Ranicki, A., Yamasaki, M.: Controlled K-theory. Topol. Appl. 61(1), 1–59 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ranicki, A., Yamasaki, M.: Controlled L-theory. In: Exotic Homology Manifolds, Oberwolfach, 2003. Geom. Topol. Monogr., vol. 9, pp. 105–153 (2006)

    Chapter  Google Scholar 

  28. Yu, G.: The Novikov conjecture for groups with finite asymptotic dimension. Ann. Math. (2) 147(2), 325–355 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Tessera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guentner, E., Tessera, R. & Yu, G. A notion of geometric complexity and its application to topological rigidity. Invent. math. 189, 315–357 (2012). https://doi.org/10.1007/s00222-011-0366-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-011-0366-z

Keywords

Navigation