Skip to main content
Log in

Universality in the 2D Ising model and conformal invariance of fermionic observables

  • Published:
Inventiones mathematicae Aims and scope

Abstract

It is widely believed that the celebrated 2D Ising model at criticality has a universal and conformally invariant scaling limit, which is used in deriving many of its properties. However, no mathematical proof has ever been given, and even physics arguments support (a priori weaker) Möbius invariance. We introduce discrete holomorphic fermions for the 2D Ising model at criticality on a large family of planar graphs. We show that on bounded domains with appropriate boundary conditions, those have universal and conformally invariant scaling limits, thus proving the universality and conformal invariance conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, M., Bernard, D., Kytölä, K.: Multiple Schramm-Loewner evolutions and statistical mechanics martingales. J. Stat. Phys. 120(5–6), 1125–1163 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baxter, R.J.: Solvable eight-vertex model on an arbitrary planar lattice. Philos. Trans. R. Soc. Lond. A 289(1359), 315–346 (1978)

    Article  MathSciNet  Google Scholar 

  3. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241(2), 333–380 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry of critical fluctuations in two dimensions. J. Stat. Phys. 34(5–6), 763–774 (1984)

    Article  MathSciNet  Google Scholar 

  5. Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry. Graduate Studies in Mathematics, vol. 98. American Mathematical Society, Providence (2008)

    Book  Google Scholar 

  6. Boutillier, C., de Tilière, B.: The critical Z-invariant Ising model via dimers: the periodic case. Probab. Theory Relat. Fields 147(3), 379–413 (2009)

    Article  Google Scholar 

  7. Boutillier, C., de Tilière, B.: The critical Z-invariant Ising model via dimers: locality property. Commun. Math. Phys. 301(2), 473–516 (2010)

    Article  Google Scholar 

  8. Bücking, U.: Approximation of conformal mappings by circle patterns. Geom. Dedic. 137, 163–197 (2008)

    Article  MATH  Google Scholar 

  9. Chelkak, D., Izyurov, K.: Holomorphic spinor observables in the critical Ising model. Preprint, arXiv:1105.5709 (2011)

  10. Chelkak, D., Smirnov, S.: Discrete complex analysis on isoradial graphs. Adv. Math. 228(3), 1590–1630 (2000)

    Article  MathSciNet  Google Scholar 

  11. Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., Smirnov, S.: Strong convergence of Ising interfaces to Schramm’s SLEs. Preprint (2011)

  12. Costa-Santos, R.: Geometrical aspects of the z-invariant Ising model. Eur. Phys. J. B 53(1), 85–90 (2006)

    Article  Google Scholar 

  13. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Tilière, B.: Scaling limit of isoradial dimer models and the case of triangular quadri-tilings. Ann. Inst. Henri Poincaré, Probab. Stat. 43(6), 729–750 (2007)

    Article  MATH  Google Scholar 

  15. Duffin, R.J.: Potential theory on a rhombic lattice. J. Comb. Theory 5, 258–272 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fisher, M.E.: Renormalization group theory: its basis and formulation in statistical physics. Rev. Mod. Phys. 70(2), 653–681 (1998)

    Article  MATH  Google Scholar 

  17. Heisenberg, W.: Zur Theorie des Ferromagnetismus. Z. Phys. Hadrons Nucl. 49(9), 619–636 (1928)

    MATH  Google Scholar 

  18. Hongler, C., Smirnov, S.: Energy density in the 2D Ising model. Preprint, arXiv:1008.2645 (2010)

  19. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925)

    Article  Google Scholar 

  20. Itzykson, C., Saleur, H., Zuber, J.-B. (eds.): Conformal Invariance and Applications to Statistical Mechanics. World Scientific Publishing Co. Inc., Teaneck (1988)

    MATH  Google Scholar 

  21. Kadanoff, L.P.: Scaling laws for Ising models near T c . Physics 2, 263 (1966)

    Google Scholar 

  22. Kadanoff, L.P., Ceva, H.: Determination of an operator algebra for the two-dimensional Ising model. Phys. Rev. B 3, 3918–3939 (1971)

    Article  MathSciNet  Google Scholar 

  23. Kemppainen, A., Smirnov, S.: Random curves, scaling limits and Loewner evolutions. Preprint (2009)

  24. Kemppainen, A., Smirnov, S.: Conformal invariance in random cluster models. II. Full scaling limit (2011, in preparation)

  25. Kenyon, R.: Conformal invariance of domino tiling. Ann. Probab. 28(2), 759–795 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kenyon, R.: Long-range properties of spanning trees. J. Math. Phys. 41(3), 1338–1363 (2000). Probabilistic techniques in equilibrium and nonequilibrium statistical physics

    Article  MathSciNet  MATH  Google Scholar 

  27. Kenyon, R.: Dominos and the Gaussian free field. Ann. Probab. 29(3), 1128–1137 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kenyon, R.: The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kenyon, R., Schlenker, J.-M.: Rhombic embeddings of planar quad-graphs. Trans. Am. Math. Soc. 357(9), 3443–3458 (2005) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Pt. 1. Phys. Rev., II Ser. 60, 252–262 (1941)

    MathSciNet  Google Scholar 

  31. Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lenz, W.: Beitrag zum Verständnis der magnetischen Eigenschaften in festen Körpern. Phys. Z. 21, 613–615 (1920)

    Google Scholar 

  33. Mercat, C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1), 177–216 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Niss, M.: History of the Lenz-Ising model 1920–1950: from ferromagnetic to cooperative phenomena. Arch. Hist. Exact Sci. 59(3), 267–318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Niss, M.: History of the Lenz-Ising model 1950–1965: from irrelevance to relevance. Arch. Hist. Exact Sci. 63(3), 243–287 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  37. Patashinskii, A.Z., Pokrovskii, V.L.: Behavior of ordered systems near the transition point. Sov. Phys. JETP 23, 292 (1966)

    Google Scholar 

  38. Peierls, R.: On Ising’s model of ferromagnetism. Proc. Camb. Philos. Soc. 32, 477–481 (1936)

    Article  MATH  Google Scholar 

  39. Polyakov, A.M.: Conformal symmetry of critical fluctuations. JETP Lett. 12(12), 381 (1970)

    Google Scholar 

  40. Rajabpour, M.A., Cardy, J.: Discretely holomorphic parafermions in lattice Z N models. J. Phys. A 40(49), 14703–14713 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Riva, V., Cardy, J.: Holomorphic parafermions in the Potts model and stochastic Loewner evolution. J. Stat. Mech. Theory Exp. 12, P12001 (2006), 19 pp. (electronic)

    Article  MathSciNet  Google Scholar 

  42. Schramm, O., Sheffield, S.: Harmonic explorer and its convergence to SLE4. Ann. Probab. 33(6), 2127–2148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21–137 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Math. Acad. Sci. Paris 333(3), 239–244 (2001)

    Article  MATH  Google Scholar 

  45. Smirnov, S.: Critical percolation in the plane. Preprint arXiv:0909.4499 (2001)

  46. Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic spin structures in the Ising model. Ann. Math. 172, 1435–1467 (2010)

    Article  MATH  Google Scholar 

  47. Smirnov, S.: Towards conformal invariance of 2D lattice models. In: Sanz-Solé, M., et al. (eds.) Proceedings of the International Congress of Mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Invited Lectures, vol. II, pp. 1421–1451. European Mathematical Society (EMS), Zürich (2006)

    Google Scholar 

  48. Smirnov, S.: Discrete complex analysis and probability. In: Bhatia, R., et al. (eds.) Proceedings of the International Congress of Mathematicians (ICM), Hyderabad, India, August 19–27, 2010. Plenary Lectures, vol. I. World Scientific, New Delhi (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Chelkak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chelkak, D., Smirnov, S. Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. math. 189, 515–580 (2012). https://doi.org/10.1007/s00222-011-0371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-011-0371-2

Mathematics Subject Classification

Navigation