Skip to main content
Log in

The Tate conjecture for K3 surfaces over finite fields

  • Published:
Inventiones mathematicae Aims and scope

An Erratum to this article was published on 22 April 2015

Abstract

Artin’s conjecture states that supersingular K3 surfaces over finite fields have Picard number 22. In this paper, we prove Artin’s conjecture over fields of characteristic p≥5. This implies Tate’s conjecture for K3 surfaces over finite fields of characteristic p≥5. Our results also yield the Tate conjecture for divisors on certain holomorphic symplectic varieties over finite fields, with some restrictions on the characteristic. As a consequence, we prove the Tate conjecture for cycles of codimension 2 on cubic fourfolds over finite fields of characteristic p≥5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The result of [22] above only works over a smooth base, and \(\widehat{B}[1/p]\) might not be smooth. However, the abelian scheme \(\mathcal{A}\) over \(\widehat{B}\) comes from the universal abelian scheme over \(\mathcal{A}_{g, d', n}\), which is smooth and where Katz’ result applies.

  2. The only difference with Proposition 25 is that \(\overline{Z}_{\varLambda}\) is not normal a priori. However, one can work on the normalization of \(\overline{Z}_{\varLambda}\) and carry on with the proof.

References

  1. André, Y.: On the Shafarevich and Tate conjectures for hyper-Kähler varieties. Math. Ann. 305(2), 205–248 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andreatta, F., Iovita, A.: Comparison isomorphisms for formal schemes. To appear in J. Inst. Math. Jussieu, available at http://www.mathstat.concordia.ca/faculty/iovita/

  3. Artin, M.: Supersingular K3 surfaces. Ann. Sci. École Norm. Super. (4) 7, 543–567 (1974)

    MATH  MathSciNet  Google Scholar 

  4. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1983)

    MATH  MathSciNet  Google Scholar 

  5. Beauville, A., Donagi, R.: La variété des droites d’une hypersurface cubique de dimension 4. C. R. Acad. Sci. Paris Sér. I Math. 301(14), 703–706 (1985)

    MATH  MathSciNet  Google Scholar 

  6. Bogomolov, F.A.: Hamiltonian Kählerian manifolds. Dokl. Akad. Nauk SSSR 243(5), 1101–1104 (1978)

    MathSciNet  Google Scholar 

  7. Borcherds, R.E.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132(3), 491–562 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borcherds, R.E.: The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J. 97(2), 219–233 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bourbaki, N.: Éléments de Mathématique. Algèbre. Chapitre 9. Springer, Berlin (2007). Reprint of the 1959 original

    MATH  Google Scholar 

  10. Breuil, C., Messing, W.: Torsion étale and crystalline cohomologies. Astérisque 279, 81–124 (2002). Cohomologies p-adiques et applications arithmétiques, II

    MathSciNet  Google Scholar 

  11. Chai, C.-L., Oort, F.: Moduli of Abelian varieties and p-divisible groups. In: Arithmetic Geometry. Clay Math. Proc., vol. 8, pp. 441–536. Am. Math. Soc., Providence (2009)

    Google Scholar 

  12. Charles, F., Schnell, C.: Notes on absolute Hodge classes. Preprint

  13. de Jong, J.: On a result of Artin. Preprint

  14. Deligne, P.: Relèvement des surfaces K3 en caractéristique nulle. In: Algebraic Surfaces, Orsay, 1976–1978. Lecture Notes in Math., vol. 868, pp. 58–79. Springer, Berlin (1981). Prepared for publication by Luc Illusie

    Google Scholar 

  15. Deligne, P.: La conjecture de Weil pour les surfaces K3. Invent. Math. 15, 206–226 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. Deligne, P.: Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques. In: Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2. Proc. Sympos. Pure Math., vol. XXXIII, pp. 247–289. Am. Math. Soc., Providence (1979)

    Google Scholar 

  17. Deligne, P., Illusie, L.: Relèvements modulo p 2 et décomposition du complexe de de Rham. Invent. Math. 89(2), 247–270 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Faltings, G., Chai, C.-L.: Degeneration of Abelian Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22. Springer, Berlin (1990). With an appendix by David Mumford

    Book  MATH  Google Scholar 

  19. Fogarty, J.: Algebraic families on an algebraic surface. Am. J. Math. 90, 511–521 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fontaine, J.-M., Messing, W.: p-adic periods and p-adic étale cohomology. In: Current Trends in Arithmetical Algebraic Geometry, Arcata, Calif., 1985. Contemp. Math., vol. 67, pp. 179–207. Am. Math. Soc., Providence (1987)

    Chapter  Google Scholar 

  21. Huybrechts, D.: Compact hyper-Kähler manifolds: basic results. Invent. Math. 135(1), 63–113 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Katz, N.M.: Nilpotent connections and the monodromy theorem: applications of a result of Turrittin. Inst. Hautes Études Sci. Publ. Math. 39, 175–232 (1970)

    Article  MATH  Google Scholar 

  23. Maulik, D., Lieblich, M., Snowden, A.: Finiteness of K3 surfaces and the Tate conjecture. arXiv:1107.1221

  24. Maulik, D.: Supersingular K3 surfaces for large primes (2012). arXiv:1203.2889

  25. Messing, W.: The Crystals Associated to Barsotti-Tate Groups: with Applications to Abelian Schemes. Lecture Notes in Mathematics, vol. 264. Springer, Berlin (1972)

    MATH  Google Scholar 

  26. Nygaard, N., Ogus, A.: Tate’s conjecture for K3 surfaces of finite height. Ann. Math. (2) 122(3), 461–507 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nygaard, N.O.: The Tate conjecture for ordinary K3 surfaces over finite fields. Invent. Math. 74(2), 213–237 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  28. O’Grady, K.G.: Involutions and linear systems on holomorphic symplectic manifolds. Geom. Funct. Anal. 15(6), 1223–1274 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ogus, A.: Singularities in the height strata in the moduli of K3 surfaces. Preprint

  30. Ogus, A.: Supersingular K3 crystals. In: Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. II. Astérisque, vol. 64, pp. 3–86. Soc. Math. France, Paris (1979)

    Google Scholar 

  31. Oort, F.: Subvarieties of moduli spaces. Invent. Math. 24, 95–119 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ramón Marí, J.J.: On the Hodge conjecture for products of certain surfaces. Collect. Math. 59(1), 1–26 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rizov, J.: Moduli stacks of polarized K3 surfaces in mixed characteristic. Serdica Math. J. 32(2–3), 131–178 (2006)

    MATH  MathSciNet  Google Scholar 

  34. Rizov, J.: Kuga-Satake abelian varieties of K3 surfaces in mixed characteristic. J. Reine Angew. Math. 648, 13–67 (2010)

    MATH  MathSciNet  Google Scholar 

  35. Tate, J.T.: Algebraic cycles and poles of zeta functions. In: Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), pp. 93–110. Harper & Row, New York (1965)

    Google Scholar 

  36. Tian, G.: Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric. In: Mathematical Aspects of String Theory, San Diego, Calif., 1986. Adv. Ser. Math. Phys., vol. 1, pp. 629–646. World Scientific Publishing, Singapore (1987)

    Chapter  Google Scholar 

  37. Todorov, A.N.: The Weil-Petersson geometry of the moduli space of SU(n≥3) (Calabi-Yau) manifolds. I. Commun. Math. Phys. 126(2), 325–346 (1989)

    Article  MATH  Google Scholar 

  38. Zarhin, Ju.G.: A remark on endomorphisms of abelian varieties over function fields of finite characteristic. Izv. Akad. Nauk SSSR, Ser. Mat. 38, 471–474 (1974)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The work on this paper started when I had the chance of discussing the paper [24] with Daniel Huybrechts during the workshop “Advances in hyperkähler and holomorphic symplectic geometry” at the BIRS in Banff.

I am very grateful to D. Huybrechts for the many discussions we had on this subject and his many remarks on early versions of this paper. I would also like to thank the organizers of the workshop for creating a stimulating atmosphere. I thank Davesh Maulik for helpful email correspondence, Olivier Benoist for interesting discussions and Hélène Esnault for helpful remarks on a first draft of this paper. I thank the referee for his careful reading and helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Charles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charles, F. The Tate conjecture for K3 surfaces over finite fields. Invent. math. 194, 119–145 (2013). https://doi.org/10.1007/s00222-012-0443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0443-y

Mathematics Subject Classification (2010)

Navigation