Skip to main content
Log in

Computing Space-Filling Curves

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We show that a continuous surjection of [0,1] onto a Euclidean Peano continuum X can be computed uniformly from a name of X as a compact set and a local connectivity operator for X. We show by means of an example that the second parameter is not superfluous. We then show that this parameter is not necessary either in that there is a computable map of [0,1] into ℝ2 whose image is not effectively locally connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allaart, P.C., Kawamura, K.: Dimensions of the coordinate functions of space-filling curves. J. Math. Anal. Appl. 335(2), 1161–1176 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arge, L., de Berg, M., Haverkort, H., Yi, K.: The priority R-tree: a practically efficient and worst-case optimal R-tree. ACM Trans. Algorithms 4(1), 30 (2008). Art. 9

    Article  MathSciNet  Google Scholar 

  3. Banakh, T., Tuncali, M.: Controlled Hahn-Mazurkiewicz theorem and some new dimension functions of Peano continua. Topology Appl. 154(7), 1286–1297 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brattka, V.: Plottable real number functions and the computable graph theorem. SIAM J. Comput. 38(1), 303–328 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Couch, P.: On a computable Hahn-Mazurkiewicz theorem. Masters thesis, Lamar University (2008)

  6. Daniel, D., McNicholl, T.: Effective local connectivity properties. Submitted

  7. Gu, X., Lutz, J., Mayordomo, E.: Curves that must be retraced. In: Bauer, A., Dillhage, R., Hertling, P., Ko, K., Rettinger, R. (eds.) CCA 2009, Sixth International Conference on Computability and Complexity in Analysis. Informatik Berichte, vol. 353, pp. 147–158. Fern-Universität, Hagen (2009)

    Google Scholar 

  8. Günther, F., Mehl, M., Pögl, M., Zenger, C.: A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves. SIAM J. Sci. Comput. 28(5), 1634–1650 (2006) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hahn, H.: Mengentheoretische characterisierung der stetigen kurven. Sitzungsber. Akad. Wiss. Wien Abt. IIa 123, 2433–2489 (1914)

    Google Scholar 

  10. Hamilton, C.H., Rau-Chaplin, A.: Compact Hilbert indices: space-filling curves for domains with unequal side lengths. Inform. Process. Lett. 105(5), 155–163 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hocking, J.G., Young, G.S.: Topology, 2nd edn. Dover, New York (1988)

    Google Scholar 

  12. Cannon, J., Thurston, W.: Group invariant Peano curves. Geom. Topol. 11, 1315–1355 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Makhanov, S.: Optimization and correction of the tool path of the five-axis milling machine. I. Spatial optimization. Math. Comput. Simul. 75(5–6), 210–230 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mazurkiewicz, S.: Sur les lignes de jordan. Fund. Math. 1, 166–209 (1920)

    Google Scholar 

  15. Miller, J.: Effectiveness for embedded spheres and balls. In: Brattka, V., Schröder, M., Weihrauch, K. (eds.) CCA 2002, Computability and Complexity in Analysis. Electronic Notes in Computer Science, vol. 66, pp. 127–138. Elsevier, Amsterdam (2002)

    Google Scholar 

  16. Moore, R.L.: On the foundations of plane analysis situs. Trans. Amer. Math. Soc. 17(2), 131–164 (1916)

    Article  MathSciNet  Google Scholar 

  17. Munkres, J.R.: Topology: A First Course. Englewood Cliffs, Prentice-Hall (1975)

    MATH  Google Scholar 

  18. Peano, G.: Sur une courbe qui remplit toute une aire plane. Math. Ann. 36, 157–160 (1890)

    Article  MathSciNet  Google Scholar 

  19. Sagan, H.: Space-filling Curves. Universitext. Springer, New York (1994)

    Book  Google Scholar 

  20. Séébold, P.: Tag-systems for the Hilbert curve. Discrete Math. Theor. Comput. Sci. 9(2), 213–226 (2007) (electronic)

    MathSciNet  Google Scholar 

  21. Sirvent, V.F.: Space filling curves and geodesic laminations. Geom. Dedicata 135, 1–14 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Weihrauch, K.: Computable Analysis. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy H. McNicholl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couch, P.J., Daniel, B.D. & McNicholl, T.H. Computing Space-Filling Curves. Theory Comput Syst 50, 370–386 (2012). https://doi.org/10.1007/s00224-010-9306-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-010-9306-3

Keywords

Navigation