Skip to main content
Log in

Continuous spectrum for a class of nonhomogeneous differential operators

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We study the boundary value problem \(-{\rm div}((|\nabla u|^{p_1(x)-2}+|\nabla u|^{p_2(x)-2})\nabla u)=\lambda|u|^{q(x)-2}u\) in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in \(\mathbb{R}^N\) with smooth boundary, λ is a positive real number, and the continuous functions p 1, p 2, and q satisfy 1 < p 2(x) < q(x) < p 1(x) < N and \(\max_{y\in\overline\Omega}q(y) < \frac{N p_2(x)}{N-p_2(x)}\) for any \(x\in\overline\Omega\). The main result of this paper establishes the existence of two positive constants λ0 and λ1 with λ0 ≤ λ1 such that any \(\lambda\in[\lambda_1,\infty)\) is an eigenvalue, while any \(\lambda\in(0,\lambda_0)\) is not an eigenvalue of the above problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E. and Mingione G. (2005). Gradient estimates for the p(x)-Laplacean system. J. Reine Angew. Math. 584: 117–148

    MATH  MathSciNet  Google Scholar 

  2. Chen, Y., Levine, S., Rao, R.: Functionals with p(x)-growth in image processing. Department of Mathematics and Computer Science, Duquesne University, Technical Report 2004-01, available at http://www.mathcs.duq.edu/~sel/CLR05SIAPfinal.pdf

  3. Diening, L.: Theoretical and numerical results for electrorheological fluids. Ph.D. thesis, University of Frieburg, Germany (2002)

  4. Edmunds D.E., Lang J. and Nekvinda A. (1999). On L p(x) norms. Proc. Roy. Soc. Lond. Ser. A 455: 219–225

    Article  MATH  MathSciNet  Google Scholar 

  5. Edmunds D.E. and Rákosník J. (1992). Density of smooth functions in W k,p(x)(Ω). Proc. Roy. Soc. Lond. Ser. A 437: 229–236

    Article  MATH  Google Scholar 

  6. Edmunds D.E. and Rákosník J. (2000). Sobolev embedding with variable exponent. Stud. Math. 143: 267–293

    MATH  Google Scholar 

  7. Fan X.L. and Zhang Q. (2003). Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal. 52: 1843–1852

    Article  MATH  MathSciNet  Google Scholar 

  8. Fan X., Zhang Q. and Zhao D. (2005). Eigenvalues of p(x)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302: 306–317

    Article  MATH  MathSciNet  Google Scholar 

  9. Halsey T.C. (1992). Electrorheological fluids. Science 258: 761–766

    Article  Google Scholar 

  10. Kováčik O. and Rákosník J. (1991). On spaces L p(x) and W 1,p(x). Czechoslov. Math. J. 41: 592–618

    Google Scholar 

  11. Mihăilescu M. and Rădulescu V. (2006). A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 462: 2625–2641

    Article  MATH  Google Scholar 

  12. Mihăilescu M. and Rădulescu V. (2007). On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Am. Math. Soc. 135: 2929–2937

    Article  MATH  Google Scholar 

  13. Mihăilescu M. and Rădulescu V. (2007). Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting. J. Math. Anal. Appl. 330: 416–432

    Article  MathSciNet  MATH  Google Scholar 

  14. Musielak J. (1983). Orlicz spaces and modular spaces. Lecture Notes in Mathematics, Vol. 1034. Springer, Berlin

    Google Scholar 

  15. Ruzicka M. (2002). Electrorheological fluids: modeling and mathematical theory. Springer, Berlin

    Google Scholar 

  16. Samko S. and Vakulov B. (2005). Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. J. Math. Anal. Appl. 310: 229–246

    Article  MATH  MathSciNet  Google Scholar 

  17. Struwe M. (1996). Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems. Springer, Heidelberg

    MATH  Google Scholar 

  18. Zhikov V. (1987). Averaging of functionals in the calculus of variations and elasticity. Math. USSR Izv. 29: 33–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicenţiu Rădulescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihăilescu, M., Rădulescu, V. Continuous spectrum for a class of nonhomogeneous differential operators. manuscripta math. 125, 157–167 (2008). https://doi.org/10.1007/s00229-007-0137-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-007-0137-8

Mathematics Subject Classification (2000)

Navigation