Skip to main content

Advertisement

Log in

Weighted Hardy inequalities and the size of the boundary

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We establish necessary and sufficient conditions for a domain \({\Omega \subset \mathbb{R}^n}\) to admit the (p, β)-Hardy inequality \({\int_{\Omega} |u|^p d_{\Omega}^{\beta-p} \leq C \int_{\Omega} |\nabla u|^p d_{\Omega}^\beta}\) , where d(x) = dist(x, ∂Ω) and \({u \in C_0^\infty(\Omega)}\) . Our necessary conditions show that a certain dichotomy holds, even locally, for the dimension of the complement Ωc when Ω admits a Hardy inequality, whereas our sufficient conditions can be applied in numerous situations where at least a part of the boundary ∂Ω is “thin”, contrary to previously known conditions where ∂Ω or Ωc was always assumed to be “thick” in a uniform way. There is also a nice interplay between these different conditions that we try to point out by giving various examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aikawa H.: Quasiadditivity of Riesz capacity. Math. Scand. 69(1), 15–30 (1991)

    MATH  MathSciNet  Google Scholar 

  2. Aikawa H., Essén M.: ‘Potential theory—selected topics’, lecture notes in mathematics, 1633. Springer, Berlin (1996)

    Google Scholar 

  3. Ancona A.: On strong barriers and an inequality of Hardy for domains in \({\mathbb{R}^n}\) . J. Lond. Math. Soc. (2) 34(2), 274–290 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Falconer K.: Fractal Geometry. Mathematical foundations and applications. John Wiley & Sons, Ltd., Chichester (1990)

    MATH  Google Scholar 

  5. Hajłasz P.: Pointwise Hardy inequalities. Proc. Am. Math. Soc. 127(2), 417–423 (1999)

    Article  MATH  Google Scholar 

  6. Hardy G.H., Littlewood J.E., Pólya G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  7. John F.: Rotation and strain. Comm. Pure Appl. Math. 14, 391–413 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kinnunen J., Martio O.: Hardy’s inequalities for Sobolev functions. Math. Res. Lett. 4(4), 489–500 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Koskela P.: The degree of regularity of a quasiconformal mapping. Proc. Am. Math. Soc. 122(3), 769–772 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Koskela, P., Lehrbäck, J.: ‘Weighted pointwise Hardy inequalities’, preprint (2007)

  11. Koskela P., Zhong X.: Hardy’s inequality and the boundary size. Proc. Am. Math. Soc. 131(4), 1151–1158 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lehrbäck J.: Pointwise Hardy inequalities and uniformly fat sets. Proc. Am. Math. Soc. 136(6), 2193–2200 (2008)

    Article  MATH  Google Scholar 

  13. Lehrbäck J.: Self-improving properties of weighted Hardy inequalities. Adv. Calc. Var. 1(2), 193–203 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lehrbäck J.: Necessary conditions for weighted Hardy inequalities, preprint (2008)

  15. Lewis J.L.: Uniformly fat sets. Trans. Am. Math. Soc. 308(1), 177–196 (1988)

    Article  MATH  Google Scholar 

  16. Martio O., Vuorinen M.: Whitney cubes, p-capacity, and Minkowski content. Expo. Math. 5(1), 17–40 (1987)

    MATH  MathSciNet  Google Scholar 

  17. Mattila P.: Geometry of sets and measures in Euclidean spaces, Cambridge studies in advanced mathematics, vol. 44. Cambridge Univ Press, Cambridge (1995)

    Google Scholar 

  18. Maz’ja V.G.: Sobolev spaces. Springer, Berlin (1985)

    MATH  Google Scholar 

  19. Nečas J.: Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle. Ann. Scuola Norm. Sup. Pisa (3) 16, 305–326 (1962)

    MATH  MathSciNet  Google Scholar 

  20. Smith W., Stegenga D.A.: Hölder domains and Poincaré domains. Trans. Am. Math. Soc. 319, 67–100 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Stein E.M.: Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  22. Väisälä J.: Exhaustions of John domains. Ann. Acad. Sci. Fenn. Ser. A I Math. 19(1), 47–57 (1994)

    MATH  MathSciNet  Google Scholar 

  23. Wannebo A.: Hardy inequalities. Proc. Am. Math. Soc. 109, 85–95 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wannebo, A.: Hardy and Hardy PDO type inequalities in domains part I, arXiv:math/ 0401253v1 (http://arxiv.org/abs/math/0401253) (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Lehrbäck.

Additional information

The author was supported in part by the Academy of Finland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehrbäck, J. Weighted Hardy inequalities and the size of the boundary. manuscripta math. 127, 249–273 (2008). https://doi.org/10.1007/s00229-008-0208-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-008-0208-5

Mathematics Subject Classification (2000)

Navigation