Skip to main content
Log in

Simultaneous nonvanishing of automorphic L-functions at the central point

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

Let g be a holomorphic Hecke eigenform and {u j } an orthonormal basis of even Hecke–Maass forms for \({\textup{SL}(2,\mathbb{Z})}\). Denote L(s, g × u j ) and L(s, u j ) the corresponding L-functions. In this paper, we give an asymptotic formula for the average of \({L(\frac{1}{2},g\times u_j)L(\frac{1}{2},u_j)}\), from which we derive that there are infinitely many u j ’s such that \({L(\frac{1}{2},g\times u_j)L(\frac{1}{2},u_j)\neq0}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conrey J.B., Iwaniec H.: The cubic moment of central values of automorphic L-functions. Ann. Math. 151(3), 1175–1216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Duke W., Friedlander J., Iwaniec H.: A quadratic divisor problem. Invent. Math. 115, 209–217 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Guo J.: On the positivity of the central critical values of automorphic L-functions for GL(2). Duke Math. J. 83(1), 157–190 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Goldfeld D., Hoffstein J., Lieman D.: An effective zero-free region. Ann. Math. 140(1), 177–181 (1994)

    Article  MathSciNet  Google Scholar 

  5. Gradshteyn I.S., Ryzhik I.M.: Table of integrals, series, and products. Translated from the Russian, Sixth edn. Academic Press, New York (2000)

    Google Scholar 

  6. Hoffstein J., Lockhart P.: Coefficients of Maass forms and the Siegel zero. Ann. Math. 140(1), 161–181 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Huxley, M.N.: Area, lattice points, and exponential sums. London mathematical society monograhphs. New Series, 13. Oxford Science Publications, Oxford University Press, New York (1996)

  8. Ivić A.: On sums of Hecke series in short intervals. J. Thor. Nombres Bordeaux 13(2), 453–468 (2001)

    MATH  Google Scholar 

  9. Iwaniec H.: The spectral growth of automorphic L-functions. J. Reine Angew. Math. 428, 139–159 (1992)

    MATH  MathSciNet  Google Scholar 

  10. Fouvry E., Iwaniec H.: Low-lying zeros of dihedral L-functions. Duke Math. J. 116(2), 189–217 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Iwaniec, H., Kowalski, E.: Analytic number theory. American Mathematical Society Colloquium Publications, 53. American Mathematical Society, Providence, RI (2004)

  12. Iwaniec H., Sarnak P.: The non-vanishing of central values of automorphic L-functions and Landau-Siegel zeros. Israes J. Math. 120(Part A), 155–177 (2000)

    MATH  MathSciNet  Google Scholar 

  13. Iwaniec, H., Sarnak, P.: Perspectives on the analytic theory of L-functions. Geom. Funct. Analysis, special vol. 1–37 (2000)

  14. Jutila, M.: The fourth moment of central values of Hecke series. In: Number theory (Turku, 1999), pp. 167–177. de Gruyter, Berlin (2001)

  15. Katk S., Sarnak P.: Heegner points, cycles and Maass forms. Israel J. Math. 84(1-2), 193–227 (1993)

    Article  MathSciNet  Google Scholar 

  16. Kowalski E., Michel P., VanderKam J.: Mollification of the fourth moment of automorphic L-functions and arithmetic applications. Invent. Math. 142(1), 95–151 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kowalski E., Michel P., VanderKam J.: Rankin-Selberg L-functions in the level aspect. Duke Math. J. 114, 123–191 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kuznetsov N.V.: Petersson’s conjecture for cusp forms of weight zero and Linnik’s conjecture. Sums of Kloosterman sums. Math. USSR Sbornik 29, 299–342 (1981)

    Article  Google Scholar 

  19. Lapid, E.: On the nonnegativity of Rankin-Selberg L-functions at the center of symmetry vol. 2, pp. 65–75. International mathematics research notice (2003)

  20. Lau, Y., Liu, J., Ye, Y.: A new bound \({k^{\frac{2}{3}+\varepsilon}}\) for Rankin-Selberg L-functions for Hecke congruence subgroups. IMRP international mathematics research papers 2006, Art. ID 35090, 78 pp. (2010)

  21. Li X.: The central value of the Rankin-Selberg L-functions. Geom. Funct. Anal. 18(5), 1660–1695 (2009)

    Article  MathSciNet  Google Scholar 

  22. Li, X.: Bounds for GL(3) × GL(2) L-functions and GL(3) L-functions (to appear Ann. Math.)

  23. Luo W.: Nonvanishing of L-values and the Weyl law. Ann. Math. 154(2), 477–502 (2001)

    Article  MATH  Google Scholar 

  24. Luo, W., Rudnick, Z., Sarnak, P.: On the generalized Ramanujan conjecture for GL(n). Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996). In: Proceedings of Symposia in Pure Mathematics, vol. 66, Part 2, pp. 301–310. American Mathematics Society, Providence, RI, (1999)

  25. Motohashi Y.: Spectral theory of the Riemann zeta-function. Cambridge Tracts in Mathematics, no. 127. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  26. Ramakrishnan, D., Rogawski, J.: Average values of modular L-series via the relative trace formula. Pure Appl. Math. Q. 4(part 3):701–735 (2005)

    Google Scholar 

  27. Soundararajan K.: Nonvanishing of quadratic Dirichlet L-functions at \({s=\frac{1}{2}}\). Ann. Math. 152(2), 447–488 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tithmarsh, E.C.: The theory of the Riemann zeta-function. Second edn. Oxford University Press, New York (1986) (Edited and with a preface by D. R. Heath-Brown)

  29. Wilton J.R.: A note on Ramanujan’s arithmetical function τ(n). Proc. Camb. Phil. Soc. 25, 121–129 (1929)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z. Simultaneous nonvanishing of automorphic L-functions at the central point. manuscripta math. 134, 309–342 (2011). https://doi.org/10.1007/s00229-010-0396-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-010-0396-7

Mathematics Subject Classification (2000)

Navigation