Skip to main content
Log in

Boundary Controllability for the Quasilinear Wave Equation

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

We study the boundary exact controllability for the quasilinear wave equation in high dimensions. Our main tool is the geometric analysis. We derive the existence of long time solutions near an equilibrium, prove the locally exact controllability around the equilibrium under some checkable geometrical conditions. We then establish the globally exact controllability in such a way that the state of the quasilinear wave equation moves from an equilibrium in one location to an equilibrium in another location under some geometrical conditions. The Dirichlet action and the Neumann action are studied, respectively. Our results show that exact controllability is geometrical characters of a Riemannian metric, given by the coefficients and equilibria of the quasilinear wave equation. A criterion of exact controllability is given, which based on the sectional curvature of the Riemann metric. Some examples are presented to verify the global exact controllability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30, 1024–1065 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berger, M.: Nonlinearity and Functional Analysis. Academic Press, San Diego (1977)

    MATH  Google Scholar 

  3. Castro, C., Zuazua, E.: Concentration and lack observability of waves in highly heterogeneous media. Arch. Ration. Anal. 164(1), 39–72 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chai, S.: Boundary feedback stabilization of Naghdi’s model. Acta Math. Sin. (Engl. Ser.) 21(1), 169–184 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chai, S.: Stabilization of thermoelastic plates with variable coefficients and dynamical boundary control. Indian J. Pure Appl. Math. 36(5), 227–249 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Chai, S., Liu, K.: Observability inequalities for the transmission of shallow shells. Syst. Control Lett. 55(9), 726–735 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chai, S., Liu, K.: Boundary feedback stabilization of the transmission problem of Naghdi’s model. J. Math. Anal. Appl. 319(1), 199–214 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chai, S., Yao, P.F.: Observability inequalities for thin shells. Sci. China (Ser. A) 46(3), 300–311

  9. Chai, S., Guo, Y., Yao, P.F.: Boundary feedback stabilization of shallow shells. SIAM J. Control Optim. 42(1), 239–259 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cirina, M.: Boundary controllability of nonlinear hyperbolic systems. SIAM J. Control 7, 198–212 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cirina, M.: Nonlinear hyperbolic problems with solutions on preassigned sets. Mich. Math. J. 17, 193–209 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dafermos, C.M., Hrusa, W.J.: Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics. Arch. Ration. Mech. Anal. 87, 267–292 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Egorov, Yu.V.: Some problems in the theory of optimal control. Z. Vycisl. Mat. Mat. Fiz. (5), 887–904 (1963)

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1998). Revised third printing

    Google Scholar 

  15. Greenberg, J.M., Li, T.T.: The effect of boundary damping for the quasilinear wave equation. J. Differ. Equ. 52(1), 66–75 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gulliver, R., Lasiecka, I., Littman, W., Triggiani, R.: The case for differential geometry in the control of single and coupled PDEs: the structural acoustic chamber. In: Geometric Methods in Inverse Problems and PDE Control. IMA Vol. Math. Appl., vol. 137, pp. 73–181. Springer, New York (2004)

    Google Scholar 

  17. Fattorini, H.O.: Boundary control of temperature distributions in a parallelepipedon. SIAM J. Control 13(1), 1–13 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ho, L.F.: Observabilité frontiére de l’e’quation des ondes. C. R. Acad. Sci. Paris Sér. I Math. 302, 443–446 (1986)

    MATH  Google Scholar 

  19. Lasiecka, I., Ong, J.: Global solvability and uniform decays of solutions to quasilinear equations with nonlinear boundary dissipation. Commun. PDEs 24, 2069–2107 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lasiecka, I., Triggiani, R.: Exact controllability of the wave equation with Neumann boundary control. Appl. Math. Optim. 19, 243–209 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lasiecka, I., Triggiani, R.: Exact controllability of semilinear abstract systems with applications to waves and plates boundary control problems. Appl. Math. Optim. 23, 109–145 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lasiecka, I., Triggiani, R.: Uniform stabilization of a shallow shell model with nonlinear boundary feedbacks. J. Math. Anal. Appl. 269(2), 642–688 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lasiecka, I., Triggiani, R., Yao, P.F.: Inverse/observability estimates for second-order hyperbolic equations with variable systems. J. Math. Anal. Appl. 235, 13–57 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, T.T.: Global Classical Solutions for Quasilinear Hyperbolic Systems. Masson/Wiley, Paris/New York (1994)

    MATH  Google Scholar 

  25. Li, T.T.: Exact boundary controllability for quasilinear hyperbolic systems and its application to unsteady flows in a network of open canals. Math. Meth. Appl. Sci. 27, 1089–1114 (2004)

    Article  MATH  Google Scholar 

  26. Li, T.T.: Exact boundary controllability of unsteady flows in a network of open canals. Math. Nachr. 278, 278–289 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Li, T.T.: Controllability and Observability for Quasilinear Hyperbolic Systems. Springer, Berlin (2008)

    Google Scholar 

  28. Li, T.T., Rao, B.P.: Exact boundary controllability for quasilinear hyperbolic systems. SIAM J. Control Optim. 41(6), 1748–1755 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Li, T.T., Yu, L.: Exact boundary controllability for 1-D quasilinear waves equations. SIAM J. Control Optim. 45, 1074–1083 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Li, T.T., Zhang, B.Y.: Global exact boundary controllability of a class of quasilinear hyperbolic systems. J. Math. Anal. Appl. 225, 289–311 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lions, J.L.: Exact controllability, stabilization and perturbations for distributed system. SIAM Rev. 30, 1–68 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. Qin, T.: The global smooth solutions of second order quasilinear hyperbolic equations with dissipative conditions. Chin. Ann. Math. Ser. B 9, 251–269 (1988)

    MATH  Google Scholar 

  33. Russell, D.L.: Controllability and stability theory for linear partial differential equations, Reccent progress and open questions. SIAM Rev. 20(4), 639–739 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schmidt, E.J.P.G.: On a non-linear wave equation and th e control of an elastic string from one equilibrium location to another. J. Math. Anal. Appl. 272, 536–554 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Seidman, T.I.: Two results on exact boundary controllability of parabolic equations. Appl. Math. Optim. 11(2), 145–152 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tataru, D.: A priori estimate of Carleman’s type in domains with boundary. J. Math. Pure Appl. 73, 355–357 (1994)

    MATH  MathSciNet  Google Scholar 

  37. Tataru, D.: Boundary controllability for conservative PDEs. Appl. Math. Optim. 31, 257–295 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  38. Triggiani, R., Yao, P.F.: Carleman estimate with no lower-order terms for general Riemann wave equation. Global uniqueness and observability in one shot. Appl. Math. Optim. 46, 331–375 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Yao, P.F.: On the observability inequalities for the exact controllability of the wave equation with variable coefficients. SIAM J. Control Optim. 37(6), 1568–1599 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  40. Yao, P.F.: Observability inequalities for the shallow shell. SIAM J. Control Optim. 38(6), 1729–1756 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  41. Yao, P.F.: Global smooth solutions for the quasilinear wave equation with boundary dissipation. J. Differ. Equ. 241, 62–93 (2007)

    Article  MATH  Google Scholar 

  42. Yong, J., Zhang, X.: Exact controllability of the heat equation with hyperbolic memory kernel. In: Control Theory of Partial Differential Equations. Lect. Notes Pure Appl. Math., vol. 424, pp. 387–401 (2005)

  43. Zhang, Z.F., Yao, P.F.: Global smooth solutions of the quasilinear wave equation with internal velocity feedback. SIAM J. Control Optim. 47, 2044–2077 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  44. Zhou, Y., Lei, Z.: Local exact boundary controllability for nonlinear wave equations. SIAM J. Control Optim. 46, 1022–1051 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Fei Yao.

Additional information

Communicated by Irena Lasiecka.

This work is supported by the NNSF of China, grants no. 60225003, no. 60334040, no. 60821091, no. 60774025, and no. 10831007 and KJCX3-SYW-S01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, PF. Boundary Controllability for the Quasilinear Wave Equation. Appl Math Optim 61, 191–233 (2010). https://doi.org/10.1007/s00245-009-9088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-009-9088-7

Keywords

AMS Subject Classifications

Navigation