Skip to main content

Advertisement

Log in

Spatial patterns in a discrete-time SIS patch model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

How do spatial heterogeneity, habitat connectivity, and different movement rates among subpopulations combine to influence the observed spatial patterns of an infectious disease? To find out, we formulated and analyzed a discrete-time SIS patch model. Patch differences in local disease transmission and recovery rates characterize whether patches are low-risk or high-risk, and these differences collectively determine whether the spatial domain, or habitat, is low-risk or high-risk. In low-risk habitats, the disease persists only when the mobility of infected individuals lies below some threshold value, but for high-risk habitats, the disease always persists. When the disease does persist, then there exists an endemic equilibrium (EE) which is unique and positive everywhere. This EE tends to a spatially inhomogeneous disease-free equilibrium (DFE) as the mobility of susceptible individuals tends to zero. The limiting DFE is nonempty on all low-risk patches and it is empty on at least one high-risk patch. Sufficient conditions for the limiting DFE to be empty on other high-risk patches are given in terms of disease transmission and recovery rates, habitat connectivity, and the infected movement rate. These conditions are also illustrated using numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen L.J.S., Bolker B.M., Lou Y., Nevai A.L.: Asymptotic profile of the steady states for an SIS epidemic patch model. SIAM J. Appl. Math. 67, 1283–1309 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allen L.J.S., Bolker B.M., Lou Y., Nevai A.L.: Asymptotic profile of the steady states for an SIS epidemic reaction-diffusion model. Discr. Cont. Dyn. Sys. A. 21, 1–20 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Allen L.J.S., Burgin A.: Comparison of deterministic and stochastic SIS and SIR models in discrete time. Math. Biosci. 163, 1–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Allen L.J.S., Jones M.A., Martin C.F.: A discrete-time model with vaccination for a measles epidemic. Math. Biosci. 105, 111–131 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Allen L.J.S., Kirupaharan N., Wilson S.M.: SIS epidemic models with multiple pathogen strains. J. Differ. Equ. Appl. 10, 53–75 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Allen, L.J.S., van den Driessche, P.: The basic reproduction number in some discrete-time epidemic models. J. Differ. Equ. Appl. (2008) (in press)

  7. Arino J., Jordan R., van den Driessche P.: Quarantine in a multi-species epidemic model with spatial dynamics. Math. Biosci. 206, 46–60 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caraco T., Duryea M., Gardner G., Maniatty W., Szymanski B.K.: Host spatial heterogeneity and extinction of an SIS epidemic. J. Theor. Biol. 192, 351–361 (1998)

    Article  Google Scholar 

  9. Carrillo C., Fife P.: Spatial effects in discrete generation population models. J. Math. Biol. 50, 161–188 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Castillo-Chavez C., Yakubu A.-A.: Dispersal, disease and life-history evolution. Math. Biosci. 173, 35–53 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Castillo-Chavez C., Yakubu A.-A.: Intraspecific competition, dispersal, and disease dynamics in discrete-time patchy environments. In: Castillo-Chavez, C., Blower, S., Driessche, P., Kirschner, D., Yakubu, A.-A. (eds) Mathematical Approaches for Emerging and Reemerging Infectious Diseases An Introduction, pp. 165–181. Springer, New York (2002)

    Google Scholar 

  12. Cushing, J.M.: An Introduction to Structured Population Dynamics. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, PA (1998)

  13. Cushing J.M., Yicang Z.: The net reproductive value and stability in structured population models. Nat. Resour. Model. 8, 1–37 (1994)

    Google Scholar 

  14. de Jong M.C.M., Diekmann O., Heesterbeek J.A.P.: The computation of R 0 for discrete-time epidemic models with dynamic heterogeneity. Math. Biosci. 119, 97–114 (1994)

    Article  MATH  Google Scholar 

  15. Dhirasakdanon T., Thieme H., van den Driessche P.: A sharp threshold for disease persistence in host metapopulations. J. Biol. Dyn. 1, 363–378 (2007)

    Article  MathSciNet  Google Scholar 

  16. Diekmann O., Heesterbeek J.A.P.: Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester (2000)

    Google Scholar 

  17. Diekmann O., Heesterbeek J.A.P., Metz J.A.J.: On the definition and the computation of the basic reproduction ratio \({\mathcal R_0}\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Doebeli M., Ruxton G.D.: Stabilization through pattern formation in metapopulations with long-range dispersal. Proc. R. Soc. Lond. B. 265, 1325–1332 (1998)

    Article  Google Scholar 

  19. Emmert K.E., Allen L.J.S.: Population persistence and extinction in a discrete-time, stage-structured epidemic model. J. Differ. Equ. Appl. 10, 1177–1199 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gantmacher F.R.: The Theory of Matrices, vol. II. Chelsea, New York (1960)

    Google Scholar 

  21. Hsieh Y.-H., van den Driessche P., Wang L.: Impact of travel between patches for spatial spread of disease. Bull. Math. Biol. 69, 1355–1375 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lewis M.A., Rencławowicz J., van den Driessche P.: Traveling waves and spread rates for a West Nile virus model. Bull. Math. Biol. 68, 3–23 (2006)

    Article  MathSciNet  Google Scholar 

  23. Lewis M.A., Rencławowicz J., van den Driessche P., Wonham M.: A comparison of continuous and discrete-time West Nile Virus models. Bull. Math. Biol. 68, 491–509 (2006)

    Article  MathSciNet  Google Scholar 

  24. Li C.-K., Schneider H.: Applications of Perron-Frobenius theory to population dynamics. J. Math. Biol. 44, 450–462 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Medlock J., Kot M.: Spreading disease: integro-differential equations old and new. Math. Biosci. 184, 201–222 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ortega J.M.: Matrix Theory: A Second Course. Plenum Press, New York (1987)

    MATH  Google Scholar 

  27. Postnikov E.B., Sokolov I.M.: Continuum description of a contact infection spread in a SIR model. Math. Biosci. 208, 205–215 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ruan S.: Spatial–temporal dynamics in nonlocal epidemiological models. In: Takeuchi, Y., Sato, K., Iwasa, Y. (eds) Mathematics for Life Science and Medicine, vol 2, pp. 97–122. Springer, New York (2007)

    Google Scholar 

  29. Smith, H.: Monotone Dynamical Systems, An introduction to the theory of competitive and cooperative systems. American Mathematical Society, Mathematical Surveys and Monographs (1995)

  30. van den Driessche P., Watmough J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wang M.-H., Kot M., Neubert M.G.: Integrodifference equations, Allee effects, and invasions. J. Math. Biol. 44, 150–168 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yakubu A.-A., Castillo-Chavez C.: Interplay between local dynamics and dispersal in discrete-time metapopulation models. J. Theor. Biol. 218, 273–288 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Nevai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, L.J.S., Lou, Y. & Nevai, A.L. Spatial patterns in a discrete-time SIS patch model. J. Math. Biol. 58, 339–375 (2009). https://doi.org/10.1007/s00285-008-0194-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0194-y

Keywords

Mathematics Subject Classification (2000)

Navigation