Skip to main content
Log in

The robustness of phase-locking in neurons with dendro-dendritic electrical coupling

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We examine the effects of dendritic filtering on the existence, stability, and robustness of phase-locked states to heterogeneity and noise in a pair of electrically coupled ball-and-stick neurons with passive dendrites. We use the theory of weakly coupled oscillators and analytically derived filtering properties of the dendritic coupling to systematically explore how the electrotonic length and diameter of dendrites can alter phase-locking. In the case of a fixed value of the coupling conductance (\(g_c\)) taken from the literature, we find that repeated exchanges in stability between the synchronous and anti-phase states can occur as the electrical coupling becomes more distally located on the dendrites. However, the robustness of the phase-locked states in this case decreases rapidly towards zero as the distance between the electrical coupling and the somata increases. Published estimates of \(g_c\) are calculated from the experimentally measured coupling coefficient (\(CC\)) based on a single-compartment description of a neuron, and therefore may be severe underestimates of \(g_c\). With this in mind, we re-examine the stability and robustness of phase-locking using a fixed value of \(CC\), which imposes a limit on the maximum distance the electrical coupling can be located away from the somata. In this case, although the phase-locked states remain robust over the entire range of possible coupling locations, no exchanges in stability with changing coupling position are observed except for a single exchange that occurs in the case of a high somatic firing frequency and a large dendritic radius. Thus, our analysis suggests that multiple exchanges in stability with changing coupling location are unlikely to be observed in real neural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Amitai Y, Gibson JR, Beierlein M, Patrick PL, Ho AM, Connors BW, Golomb D (2004) The spatial dimensions of electrically coupled networks of interneurons in the neocortex. J Neurosci 22(10): 4142–4152

    Google Scholar 

  • Averbeck BB, Lee D (2004) Coding and transmission of information by neural ensembles. Trends Neurosci 27(4):225–230

    Article  Google Scholar 

  • Beierlein M, Gibson JR, Connors BW (2000) A network of electronically coupled interneurons drives synchronized activity in neocortex. Nat Neurosci 3:904–910

    Article  Google Scholar 

  • Bennett MVL (1977) The nervous system, part I. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology, section I. American Physiological Society, Bethesda, pp 357–416

    Google Scholar 

  • Bressloff PC, Coombes S (1997) Physics of the extended neuron. J Mod Phys B 11:2343–2392

    Article  Google Scholar 

  • Bressloff PC, Coombes S (1997) Synchrony in an array of integrate-and-fire neurons with dendritic structure. Phys Rev Lett 78:4665–4668

    Article  Google Scholar 

  • Buzsáki G (1997) Functions for hippocampal interneurons. Can J Physiol Pharm 75:508–515

    Article  Google Scholar 

  • Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929

    Article  Google Scholar 

  • Cardin JA, Carleń M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai L, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667

    Article  Google Scholar 

  • Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418

    Article  Google Scholar 

  • Crook SM, Ermentrout GB, Bower JM (1998) Dendritic and synaptic effects in systems of coupled cortical oscillators. J Comput Neurosci 5:315–329

    Article  MATH  Google Scholar 

  • Erisir A, Lau D, Rudy B, Leonard CS (1999) Function of specific K+ channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J Neurophysiol 82:2476–2489

    Google Scholar 

  • Ermentrout B, Pascal M, Gutkin B (2001) The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Comput 13(6):1285–1310

    Article  MATH  Google Scholar 

  • Ermentrout GB (1996) Type 1 membranes, phase resetting curves, and synchrony. Neural Comput 8: 979–1001

    Article  Google Scholar 

  • Ermentrout GB, Kopell N (1984) Frequency plateaus in a chain of weakly coupled oscillators, I. SIAM J Math Anal 15(2):215–237

    Article  MATH  MathSciNet  Google Scholar 

  • Fink C, Booth V, Zochowski M (2011) Cellularly-driven differences in network synchronization capacity are differentially modulated by firing frequency. PLOS Comput Biol 7(5):e1002062

    Google Scholar 

  • Fukuda T, Kosaka T (2000) Gap junctions linking the dendritic network of gabaergic interneurons in the hippocampus. J Neurosci 20:1519–1528

    Google Scholar 

  • Fukuda T, Kosaka T (2003) Ultrastructural study of gap junctions between dendrites of parvalbumin-containing gabaergic neurons in various neocortical areas of the adult rat. Neuroscience 120:5–20

    Article  Google Scholar 

  • Fukuda T, Kosaka T, Singer W, Galuske RAW (2006) Gap junctions among dendrites of cortical gabaergic neurons establish a dense and widespread intercolumnar network. J Neurosci 26:3434–3443

    Article  Google Scholar 

  • Galaretta M, Hestrin S (1999) A network of fast spiking cells in the neocortex connected by electrical synapses. Nature 402:72–75

    Article  Google Scholar 

  • Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75–79

    Article  Google Scholar 

  • Gibson JR, Beierlein M, Connors BW (2005) Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. J Neurosci 93:467–480

    Google Scholar 

  • Gonzalez-Burgos G, Lewis DA (2008) Gaba neurons and the mechanisms of network oscillations: Implications for understanding cortical dysfunction in schizophrenia. Schizophrenia Bull 34(5):944–961

    Article  Google Scholar 

  • Hestrin S, Galarreta M (2005) Electrical synapses define networks of neocortical gabaergic neurons. Trends Neurosci 28:304–309

    Article  Google Scholar 

  • Hoppensteadt FC, Izikevich EM (1997) Weakly connected neural networks. Springer, New York

    Book  Google Scholar 

  • Hu H, Martina M, Jonas P (2010) Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science 327:52–58

    Article  Google Scholar 

  • Johnston D, Narayanan R (2008) Active dendrites: colorful wings of the mysterious butterfly. Trends Neurosci 31(6):309–316

    Article  Google Scholar 

  • Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, New York

    Google Scholar 

  • Kopell N, Ermentrout GB (2003) Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc Natl Acad Sci 101:15482–15487

    Article  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Book  MATH  Google Scholar 

  • Lewis TJ, Rinzel J (2003) Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J Comput Neurosci 14:283–309

    Article  Google Scholar 

  • Lewis TJ, Rinzel J (2004) Dendritic effects in networks of electrically coupled fast-spiking interneurons. Neurocomputing 58–60:145–150

    Article  MathSciNet  Google Scholar 

  • Lewis TJ, Skinner FK (2012) Understanding activity in electrically coupled networks using PRCs and the theory of weakly coupled oscillators. In: Schultheiss NW, Prinz A, Butera RJ (eds) Phase response curves in neuroscience: theory, experiment, and analysis. Springer, New York, pp 329–359

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366

    Article  Google Scholar 

  • Mancilla JG, Lewis TJ, Pinto DJ, Rinzel J, Connors BW (2007) Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. J Neurosci 27(8):2058–2073

    Article  Google Scholar 

  • Mann EO, Paulsen O (2005) Mechanisms underlying gamma (40 Hz) network oscillations in the hippocampusa mini-review. Prog Biophys Mol Biol 87(1):67–76

    Article  Google Scholar 

  • McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev 2:11–23

    Article  Google Scholar 

  • Netoff T, Schwemmer MA, Lewis TJ (2012) Experimentally estimating phase response curves of neurons: theoretical and practical issues. In: Schultheiss NW, Prinz A, Butera RJ (eds) Phase response curves in neuroscience: theory, experiment, and analysis. Springer, New York, pp 95–129

    Chapter  Google Scholar 

  • Neu JC (1979) Coupled chemical oscillators. SIAM J Appl Math 37(2):307–315

    Article  MATH  MathSciNet  Google Scholar 

  • Ono T, Sasaki K, Nishino H, Fukuda M, Shibata R (1986) Feeding and diurnal related activity of lateral hypothalamic neurons in freely behaving rats. Brain Res 373(1–2):92–102

    Article  Google Scholar 

  • Pfeuty B, Mato G, Golomb D, Hansel D (2003) Electrical synapses and synchrony: the role of intrinsic currents. J Neurosci 23(15):6280–6294

    Google Scholar 

  • Pfeuty B, Mato G, Golomb D, Hansel D (2005) The combined effects of inhibitory and electrical synapses in synchrony. Neural Comput 17:633–670

    Article  MATH  MathSciNet  Google Scholar 

  • Prinz AA, Fromherz P (2002) Effect of neuritic cables on conductance estimates for remote electrical synapses. J Neurophysiol 89:2215–2224

    Article  Google Scholar 

  • Rall W (1957) Membrane time constants of motoneurons. Science 126:454

    Article  Google Scholar 

  • Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 2:491–527

    Article  Google Scholar 

  • Rall W (1960) Membrane potential transients and membrane time constant of motoneurons. Exp Neurol 2:503–532

    Article  Google Scholar 

  • Rall W (1977) Time constants and electrotonic length of membrane cylinders and neurons. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology. The nervous system I. American Physiological Society, Bethesda

  • Rekling JC, Feldman JL (1998) Pre-bötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu Rev Physiol 60:385–405

    Article  Google Scholar 

  • Remme M, Lengyel M, Gutkin BS (2009) The role of ongoing dendritic oscillations in single-neuron dynamics. PLoS Comput Biol 5(9):e1000493

    Article  MathSciNet  Google Scholar 

  • Risken H (1989) The Fokker–Planck equation: methods of solution and applications. Springer, New York

    MATH  Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550

    Article  Google Scholar 

  • Saraga F, Ng L, Skinner FK (2006) Distal gap junctions and active dendrites can tune network dynamics. J Neurophysiol 95:1669–1682

    Article  Google Scholar 

  • Saraga F, Skinner FK (2004) Location, location, location (and density) of gap junctions in multi-compartment models. Neurocomputing 58–60:713–719

    Article  MathSciNet  Google Scholar 

  • Schwemmer MA, Lewis TJ (2011) Effects of dendritic load on the firing frequency of oscillating neurons. Phys Rev E 83:013906

    Article  MathSciNet  Google Scholar 

  • Schwemmer MA, Lewis TJ (2012) Bistability in a leaky-integrate-and-fire neuron with a passive dendrite. SIAM J Appl Dyn Syst 11:507–539

    Article  MATH  MathSciNet  Google Scholar 

  • Schwemmer MA, Lewis TJ (2012) The theory of weakly coupled oscillators. In: Schultheiss NW, Prinz A, Butera RJ (eds) Phase response curves in neuroscience: theory, experiment, and analysis. Springer, New York, pp 3–32

    Chapter  Google Scholar 

  • Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702

    Article  Google Scholar 

  • Stratonovich RL (1967) Topics in the theory of random noise. Gordon and Breach, New York

    MATH  Google Scholar 

  • Teramae J, Nakao H, Ermentrout GB (2009) Stochastic phase reduction for a general class of noisy limit cycle oscillators. Phys Rev Lett 102:194102

    Article  Google Scholar 

  • Teramae J, Tanaka D (2004) Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys Rev Lett 93(20):204103

    Article  Google Scholar 

  • Traub RD, Kopell N, Bibbig A, Buhl E, LeBeau FEN, Whittington MA (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J Neurosci 21(23):9478–9486

    Google Scholar 

  • Tresch MC, Kiehn O (2002) Synchronization of motor neurons during locomotion in the neonatal rat: predictors and mechanisms. J Neurosci 22(22):9997–10008

    Google Scholar 

  • van Kampen NG (1981) Stochastic processes in physics and chemistry. Elsevier Science, Amsterdam

    MATH  Google Scholar 

  • Wang X-J, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16(20):6402–6413

    Google Scholar 

  • Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 7(12):553–559

    Article  Google Scholar 

  • Zahid T, Skinner FK (2009) Predicting synchronous and asynchronous network groupings of hippocampal interneurons coupled with dendritic gap junctions. Brain Res 1262:115–129

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation under grant DMS-0921039. MS is supported by NIH grant T32-MH065214-1 through the Princeton Neuroscience Institute. The authors would also like to thank Jiawei Zhang for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Schwemmer.

Appendices

Appendix A: Somatic model and system parameters

We used a model of a cortical inhibitory fast spiking interneuron due to Erisir et al. (1999) to describe our somatic dynamics. The model equations and parameters are

$$\begin{aligned} C_m \frac{d v}{d t}&= - g_{Na}m^3 h (v(t)-E_{Na}) - g_K n^2(v(t)-E_K)-g_{K_s} n_s^4(v(t)-E_K)\\&\quad -g_L(v(t)-E_L) +I \\ \frac{dm}{dt}&= \alpha _m(v)(1-m)-\beta _m(v)m\\ \frac{dh}{dt}&= \alpha _h(v)(1-h)-\beta _h(v)h\\ \frac{dn}{dt}&= \alpha _n(v)(1-n)-\beta _n(v)n\\ \frac{dn_s}{dt}&= \alpha _{n_s}(v)(1-n_s)-\beta _{n_s}(v)n_s \end{aligned}$$

where

$$\begin{aligned} \alpha _m(v)&= \frac{40.0 (75.5-v)}{\exp ((75.0-v)/(13.5))-1.0} \qquad \beta _m(v)=\frac{1.2262}{\exp (v/42.248)}\\ \alpha _h(v)&= \frac{0.0035}{\exp (v/24.186)} \qquad \qquad \qquad \beta _h(v)=\frac{-0.017 (51.25+v)}{\exp (-(52.25+v)/5.2)-1.0}\\ \alpha _n(v)&= \frac{(95.0-v)}{\exp ((95.0-v)/11.8)-1.0} \qquad \beta _n(v)=\frac{0.025}{\exp (v/22.22)}\\ \alpha _{n_s}(v)&= \frac{-0.014 (44.0+v)}{\exp (-(44.0+v)/2.3)-1.0} \qquad \beta _{n_s}(v)=\frac{0.0043}{\exp ((44.0+v)/34.0)} \end{aligned}$$

and

$$\begin{aligned} C_m&= 1.0 \upmu \mathrm{F/cm}^2 \quad g_{Na}=112.5~\mathrm{mS/cm}^2 \quad g_K = 225 mS/cm^2\\ g_{K_s}&= 0.225~\mathrm{mS/cm}^2 \quad g_L= 0.25~\mathrm{mS/cm}^2 \quad E_{Na}= 74.0~\mathrm{mV}\\ E_{K}&= -90.0~\mathrm{mV} \quad E_{L}= -70.0 \mathrm{mV} \end{aligned}$$

The cable parameters we hold constant are

$$\begin{aligned} g_{LD} = 0.2~~\mathrm{mS/cm}^2 \quad d = 0.002~\mathrm{cm} \quad R_i = 0.1~\mathrm{k}\Omega \,\mathrm{cm}\\ \end{aligned}$$

Appendix B: Coupling coefficient

Here we derive the directional coupling coefficient for two electrically coupled ball-and-stick neurons with heterogeneity in dendritic length. The equations are given by

$$\begin{aligned}&C_m\frac{\partial \bar{v}_j}{\partial t} = \frac{a}{2R_i} \frac{\partial ^2 \bar{v}_j}{\partial x^2} -g_{LD}(\bar{v}_j-E_{LD})\\&C_m \frac{\partial \bar{v}_j}{\partial t}(0,t) = - g_L(\bar{v}_j(0,t)-E_L)+ I +\frac{ a^2}{d^2 R_i} \frac{\partial \bar{v}_j}{\partial x} (0,t)\\&\frac{\pi a^2}{R_i} \frac{\partial \bar{v}_j}{\partial x} (L_j,t) = g_c (\bar{v}_k(L_k,t) - \bar{v}_j(L_j,t)). \end{aligned}$$

If a current \(I\) is applied to the soma of cell \(j\), the steady-state equations are then

$$\begin{aligned}&\frac{d^2 v_j}{d x^2} = \frac{2R_ig_{LD}}{a} (v_j-E_{LD})=\frac{1}{\lambda ^2} (v_j-E_{LD})\\&\frac{ a^2}{d^2 R_i} \frac{d v_j}{d x} (0)= g_L(v_j(0)-E_L)- I \\&\frac{d v_j}{d x} (L_j) = \frac{g_c R_i}{\pi a^2} (v_k(L_k) - v_j(L_j)), \end{aligned}$$

where \(v_j(x)=\bar{v}_j(x,\infty ), \ j,k =1,2; j \ne k\). The solutions of the above system are given by

$$\begin{aligned}&v_j(x)=A_j \sinh \left(\frac{x}{\lambda }\right)+B_j \cosh \left(\frac{x}{\lambda }\right)+E_{LD}\\&v_k(x)=A_k \sinh \left(\frac{x}{\lambda }\right)+B_k \cosh \left(\frac{x}{\lambda }\right)+E_{LD}, \end{aligned}$$

where

$$\begin{aligned}&B_j=\frac{g_{LD}}{g_L}\varepsilon A_j + F +\frac{I}{g_L} \\&B_k=\frac{g_{LD}}{g_L}\varepsilon A_k + F\\&A_j = \frac{g}{\lambda } \frac{\gamma _k}{\alpha _j \alpha _k-\left(\frac{g}{\lambda }\right)^2 \gamma _k \gamma _j}\Bigg (\frac{g}{\lambda } \bigg [F+\frac{I}{g_L}\bigg ]\cosh \left(\frac{L_j}{\lambda }\right) - F\beta _k \Bigg ) \nonumber \\&\qquad +\frac{\alpha _k}{\alpha _j \alpha _k-\left(\frac{g}{\lambda }\right)^2 \gamma _k \gamma _j}\Bigg (\frac{g}{\lambda }F \cosh \left(\frac{L_k}{\lambda }\right) - \bigg [F+\frac{I}{g_L}\bigg ]\beta _j \Bigg ) \\&A_k = \frac{g}{\lambda } \frac{\gamma _j}{\alpha _j \alpha _k-\left(\frac{g}{\lambda }\right)^2 \gamma _k \gamma _j}\Bigg (\frac{g}{\lambda }F \cosh \left(\frac{L_k}{\lambda }\right) - \bigg [F+\frac{I}{g_L}\bigg ]\beta _j \Bigg )\nonumber \\&\qquad +\frac{\alpha _j}{\alpha _j \alpha _k-\left(\frac{g}{\lambda }\right)^2 \gamma _k \gamma _j}\Bigg (\frac{g}{\lambda } \bigg [F+\frac{I}{g_L}\bigg ]\cosh \left(\frac{L_j}{\lambda }\right) - F\beta _k\Bigg ), \end{aligned}$$

and

$$\begin{aligned}&\alpha _j=\bigg [\frac{1}{\lambda } + \frac{g_{LD}}{g_L} \frac{\varepsilon g}{\lambda } \bigg ]\cosh \left(\frac{L_j}{\lambda }\right)+\bigg [\frac{g}{\lambda } + \frac{g_{LD}}{g_L} \frac{\varepsilon }{\lambda } \bigg ]\sinh \left(\frac{L_j}{\lambda }\right)\\&\beta _j=\frac{1}{\lambda }\sinh \left(\frac{L_j}{\lambda }\right)+\frac{g}{\lambda }\cosh \left(\frac{L_j}{\lambda }\right)\\&\gamma _j=\sinh \left(\frac{L_j}{\lambda }\right)+\frac{g_{LD}}{g_L}\varepsilon \cosh \left(\frac{L_j}{\lambda }\right)\\&F= E_L-E_{LD}\\&g = \frac{g_c R_i \lambda }{\pi a^2}\\&\varepsilon =\frac{a^2}{d^2 R_i g_{LD} \lambda }, \end{aligned}$$

and \(\alpha _k\), \(\beta _k\), and \(\gamma _k\) are defined similarly. The coupling coefficient is then \(\frac{\Delta v_k(0)}{\Delta v_j(0)}\), i.e., the difference in the steady state potentials for the two somata when current \(I\) is injected into the soma of cell \(j\) and no current is injected into either cell. Let the coefficients \(\tilde{A}_{j}, \tilde{A}_{k}, \tilde{B}_{j}\) and \(\tilde{B}_{k}\) correspond to the steady state potentials when no current is injected into either cell (i.e., set \(I=0\) in the equations for \({A}_{j}, {A}_{k}, {B}_{j}\) and \({B}_{k}\)). Then the directional coupling coefficient that measures the DC attenuation from cell \(j\) to cell \(k\) is

$$\begin{aligned} CC_k&= \frac{\Delta v_k(0)}{\Delta v_j(0)} = \frac{B_k-\tilde{B}_k}{B_j-\tilde{B}_j}\nonumber \\&= \frac{\frac{g_{LD}}{g_L}\varepsilon \frac{g}{\lambda } \rho \left(-\gamma _j \beta _j+\alpha _j\cosh \left(\frac{L_j}{\lambda }\right)\right)}{\frac{g_{LD}}{g_L}\varepsilon \rho \left(\left(\frac{g}{\lambda }\right)^2\gamma _k \cosh \left(\frac{L_j}{\lambda }\right)-\alpha _k\beta _j\right) +1 }, \end{aligned}$$

where

$$\begin{aligned} \rho =\frac{1}{\alpha _k \alpha _j -\left(\frac{g}{\lambda }\right)^2\gamma _k \gamma _j}. \end{aligned}$$

If \(L_j=L_k=L\), then we arrive at the coupling coefficent for two identical ball-and-stick neurons

$$\begin{aligned} CC=\frac{2\varepsilon g_{LD} g}{g_L+\sinh \left(2\frac{L}{\lambda }\right)[\varepsilon g_{LD}+2g g_L] + \cosh \left(2\frac{L}{\lambda }\right)[2\varepsilon g g_{LD}+ g_L]}. \end{aligned}$$

Furthermore, if \(\frac{L}{\lambda }=0\), we arrive at

$$\begin{aligned} CC&= \frac{\varepsilon g_{LD} g }{g_L+\varepsilon g_{LD} g}\\&= \frac{g_c}{\pi d^2 g_L +g_c}, \end{aligned}$$

which is the coupling coefficient assuming two coupled single-compartment neurons Bennett (1977).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwemmer, M.A., Lewis, T.J. The robustness of phase-locking in neurons with dendro-dendritic electrical coupling. J. Math. Biol. 68, 303–340 (2014). https://doi.org/10.1007/s00285-012-0635-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0635-5

Keywords

Mathematics Subject Classification (2000)

Navigation