Skip to main content
Log in

Approximation by radial basis functions with finitely many centers

  • Published:
Constructive Approximation Aims and scope

Abstract

Interpolation by translates of “radial” basis functions Φ is optimal in the sense that it minimizes the pointwise error functional among all comparable quasiinterpolants on a certain “native” space of functions\(\mathcal{F}_\Phi \). Since these spaces are rather small for cases where Φ is smooth, we study the behavior of interpolants on larger spaces of the form\(\mathcal{F}_{\Phi _0 } \) for less smooth functions Φ0. It turns out that interpolation by translates of Φ to mollifications of functionsf from\(\mathcal{F}_{\Phi _0 } \) yields approximations tof that attain the same asymptotic error bounds as (optimal) interpolation off by translates of Φ0 on\(\mathcal{F}_{\Phi _0 } \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Buhmann (1993):New developments in the theory of radial basis function interpolation. In: Multivariate Approximations: From CAGD to Wavelets (K. Jetter, F.I. Utreras, eds.), London: World Scientific, pp. 35–75.

    Google Scholar 

  2. N. Dyn (1989):Interpolation and approximation by radial and related functions. In: Approximation Theory VI, vol. 1 (C. K. Chui, L. L. Schumaker, J. D. Ward, eds.). New York: Academic Press, pp. 211–234

    Google Scholar 

  3. D. S. Jones (1982): The Theory of Generalized Functions. Cambridge: Cambridge University Press.

    Google Scholar 

  4. W. R. Madych, S. A. Nelson (1983): Multivariate Interpolation: A Variational Theory. Manuscript.

  5. W. R. Madych, S. A. Nelson (1990)Multivariate interpolation and conditionally positive definite functions II. Math. Comp.,54:211–230.

    Article  MATH  MathSciNet  Google Scholar 

  6. W. R. Madych, S. A. Nelson (1992):Bounds on multivariate polynomials and exponential error estimates for multiquadric linterpolation. J. Approx. Theory,70:94–114.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. J. D. Powell (1991). Univariate Multiquadric Interpolation: Some Recent Results. Curves and Surfaces (P.J. Laurent, A. Le Méhauté, L. L. Schumaker, eds.). Boston: Academic Press, pp. 371–382.

    Google Scholar 

  8. R. Schaback (1995).Error estimates and condition numbers for radial basis function interpolation. Adv. in Comput. Math.3:251–264.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Schaback (1993).Comparison of radial basis function interpolants. In: Multivariate Approximation. From CAGD to Wavelets (K. Jetter, F. Utreras, eds.). London: World Scientific, pp. 293–305.

    Google Scholar 

  10. Z. Wu, R. Schaback (1993):Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal.,13:13–27.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M.J.D. Powell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaback, R. Approximation by radial basis functions with finitely many centers. Constr. Approx 12, 331–340 (1996). https://doi.org/10.1007/BF02433047

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02433047

AMS classification

Key words and phrases

Navigation