Skip to main content
Log in

Adaptive greedy approximations

  • Published:
Constructive Approximation Aims and scope

Abstract

The problem of optimally approximating a function with a linear expansion over a redundant dictionary of waveforms is NP-hard. The greedy matching pursuit algorithm and its orthogonalized variant produce suboptimal function expansions by iteratively choosing dictionary waveforms that best match the function’s structures. A matching pursuit provides a means of quickly computing compact, adaptive function approximations.

Numerical experiments show that the approximation errors from matching pursuits initially decrease rapidly, but the asymptotic decay rate of the errors is slow. We explain this behavior by showing that matching pursuits are chaotic, ergodic maps. The statistical properties of the approximation errors of a pursuit can be obtained from the invariant measure of the pursuit. We characterize these measures using group symmetries of dictionaries and by constructing a stochastic differential equation model.

We derive a notion of the coherence of a signal with respect to a dictionary from our characterization of the approximation errors of a pursuit. The dictionary elements slected during the initial iterations of a pursuit correspond to a function’s coherent structures. The tail of the expansion, on the other hand, corresponds to a noise which is characterized by the invariant measure of the pursuit map.

When using a suitable dictionary, the expansion of a function into its coherent structures yields a compact approximation. We demonstrate a denoising algorithm based on coherent function expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chen, S. A. Billings, W. Luo (1989):Orthogonal least squares methods and their application to non-linear system identification. Internat. J. Control,50:1873–1896.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Cohen (1989):Time-frequency distributions: A review. Proc. IEEE,77:941–979.

    Article  Google Scholar 

  3. P. Collet, J. P. Eckmann (1980): Iterated Maps on the Interval as Dynamical Systems. Boston: Birkhauser.

    MATH  Google Scholar 

  4. T. H. Cormen, C. E. Leiserson, R. L. Rivest (1991): Introduction to Algorithms. New York: McGraw-Hill.

    Google Scholar 

  5. I. Daubechies (1991): Ten Lectures on Wavelets. CBMS-NSF Series in Appl. Math. Philadelphia: SIAM.

    Google Scholar 

  6. G. Davis (1994): Adaptive Nonlinear Approximations. PhD dissertation, Department of Mathematics, New York University.

  7. G. Davis, S. Mallat, Z. Zhang (1994):Adaptive time-frequency decompositions. Optical Engrg.,33:2183–2191.

    Article  Google Scholar 

  8. R. L. Devaney (1989): An Introduction to Chaotic Dynamical Systems. New York: Addison-Wesley.

    MATH  Google Scholar 

  9. R. A. DeVore, B. Jawerth, B. J. Lucier (1992):Image compression through wavelet transform coding. IEEE Trans. Inform. Theory,38:719–746.

    Article  MathSciNet  Google Scholar 

  10. R. A. DeVore, B. Jawerth, V. Popov (1992):Compression of wavelet decompositions. Amer. J. Math.,114:737–785.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. L. Donoho (1993):Wavelet shrinkage and W.V.D.: A 10-minute tour. In: Progress in Wavelet Analysis and Applications (Y. Meyer, S. Roques, eds.). Gif-sur-Yvette, France: Editions Frontieres, pp. 109–128.

    Google Scholar 

  12. C. W. Gardiner (1985): Handbook of Stochastic Methods. New York: Springer-Verlag.

    Google Scholar 

  13. M. R. Garey, D. S. Johnson (1979): Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W. H. Freeman.

    MATH  Google Scholar 

  14. P. R. Halmos (1956): Lectures on Ergodic Theory. Tokyo: Mathematical Society of Japan.

    MATH  Google Scholar 

  15. L. K. Jones (1987):On a conjecture of Huber concerning the convergence of projection pursuit regression. Ann. Statist.,15:880–882.

    MATH  MathSciNet  Google Scholar 

  16. A. Lasota, M. Mackey (1985): Probabilistic Properties of Deterministic Systems. New York: Cambridge University Press.

    MATH  Google Scholar 

  17. S. Mallat, Z. Zhang (1993):Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal Processing,41:3397–3415.

    Article  MATH  Google Scholar 

  18. Y. C. Pati, R. Rezaiifar, P. S. Krishnaprasad (1993):Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, and Computers, pp. 40–44. IEEE Computer Society Press.

  19. S. Qian, D. Chen (1994):Signal representation via adaptive normalized gaussian functions. IEEE Trans. Signal Processing,36:1–11.

    MATH  MathSciNet  Google Scholar 

  20. M. Reed, B. Simon (1972): Methods of Modern Mathematical Statistics, Vol. 1. New York: Academic Press.

    Google Scholar 

  21. N. Saito (1994):Simultaneous noise suppression and signal compression using a library of orthonormal bases and the minimum description length criterion. Wavelets in Geophysics (Efi Foufoula-Georgiou, Praveen Kumar, eds.). Academic Press, San Diego.

    Google Scholar 

  22. L. Blum, M. Shub, S. Smale (1989):On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions, and universal machines. Bull. Amer. Math. Soc.,21:1–46.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Walters (1975): Ergodic theory—Introductory Lectures. New York: Springer-Verlag.

    MATH  Google Scholar 

  24. Z. Zhang (1993): Matching Pursuit. PhD dissertation, New York University.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Albert Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, G., Mallat, S. & Avellaneda, M. Adaptive greedy approximations. Constr. Approx 13, 57–98 (1997). https://doi.org/10.1007/BF02678430

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02678430

AMS classification

Key words and phrases

Navigation