Skip to main content
Log in

On the Maximum Number of Cliques in a Graph

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m edges; (2) graphs with n vertices, m edges, and maximum degree Δ; (3) d-degenerate graphs with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs with n vertices and no K5-minor or no K3,3-minor. For example, the maximum number of cliques in a planar graph with n vertices is 8(n − 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth, Theor. Comput. Sci. 209(1–2), 1–45 (1998)

    Google Scholar 

  • Bollobás, B.: Extremal graph theory. In: Handbook of Combinatorics, vol. 1, 2, pp. 1231–1292, Elsevier, 1995

  • Bollobás, B., Erdős, P.: Cliques in random graphs, Math. Proc. Cambridge Philos. Soc. 80(3), 419–427 (1976)

    Google Scholar 

  • Bollobás, B., Erdős, P., Szemerédi, E.: On complete subgraphs of r-chromatic graphs, Disc. Math. 13(2), 97–107 (1975)

    Google Scholar 

  • Eckhoff, J.: The maximum number of triangles in a K4-free graph, Disc. Math. 194(1–3), 95–106 (1999)

    Google Scholar 

  • Eckhoff, J.: A new Turán-type theorem for cliques in graphs, Disc. Math. 282(1–3), 113–122 (2004)

    Google Scholar 

  • Eppstein, D.: Connectivity, graph minors, and subgraph multiplicity, J. Graph Theory 17(3), 409–416 (1993)

    Google Scholar 

  • Erdős, P.: On the number of complete subgraphs contained in certain graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7, 459–464 (1962)

  • Erdős, P.: On cliques in graphs, Israel J. Math. 4, 233–234 (1966)

    Google Scholar 

  • Erdős, P.: On the number of complete subgraphs and circuits contained in graphs. Časopis Pěst. Mat. 94, 290–296 (1969)

    Google Scholar 

  • Fan, C., Liu, J.: On cliques of graphs. In: Graph Theory, Combinatorics, Algorithms, and Applications, pp. 140–150. SIAM (1991)

  • Farber, M., Hujter, M., Tuza, Z.: An upper bound on the number of cliques in a graph, Networks 23(3), 207–210 (1993)

    Google Scholar 

  • Fisher, D.C.: Lower bounds on the number of triangles in a graph, J. Graph Theory 13(4), 505–512 (1989)

    Google Scholar 

  • Fisher, D.C., Nonis, J.M.: Bounds on the “growth factor” of a graph. In: Proc. 21st Southeastern Conf. on Combinatorics, Graph Theory, and Computing vol. 77 of Congr. Numer., pp. 113–119. Utilitas Math. 1990

  • Fisher, D.C., Ryan, J.: Bounds on the number of complete subgraphs, Disc. Math. 103(3), 313–320 (1992)

    Google Scholar 

  • Hadžiivanov, N.G.: Maximum of a multilinear form of integer variables, and its application in the theory of extremal graphs, C. R. Acad. Bulgare Sci. 30(10), 1373–1376 (1977)

  • Hadžiivanov, N.G., Nenov, N.D.: p-sequences of graphs and some extremal properties of Turán graphs, C. R. Acad. Bulgare Sci. 30(4), 475–478 (1977)

    Google Scholar 

  • Harary, F., Lempel, A.: On clique-extremal (p,q)-graphs, Networks 4, 371–378 (1974)

  • Jou, M.-J., Chang, G.J.: The number of maximum independent sets in graphs, Taiwanese J. Math. 4(4), 685–695 (2000)

    Google Scholar 

  • Khadzhiivanov, N., Nenov, N.: Sharp estimates of the highest number of cliques of a graph, Ann. Univ. Sofia Fac. Math. Méc. 70, 23–26 (1975/76)

    Google Scholar 

  • Kostochka, A.V.: The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz. 38, 37–58 (1982)

    Google Scholar 

  • Larman, D.G.: On the number of complete subgraphs and circuits in a graph, Proc. Roy. Soc. Ser. A 308, 327–342 (1969)

    Google Scholar 

  • Lovász, L., Simonovits, M.: On the number of complete subgraphs of a graph. In: Proc. of 5th British Combinatorial Conference, vol. XV of Congr. Numer. pp. 431–441. Utilitas Math. 1976

  • Lovász, L., Simonovits, M.: On the number of complete subgraphs of a graph. II: In: Studies in Pure Mathematics, pp. 459–495. Birkhäuser, 1983

  • Moon, J.W.: On the number of complete subgraphs of a graph, Can. Math. Bull. 8, 831–834 (1965)

    Google Scholar 

  • Moon, J.W., Moser, L.: On cliques in graphs, Israel J. Math. 3, 23–28 (1965)

    Google Scholar 

  • Nenov, N., Khadzhiivanov, N.: A new proof of a theorem about the maximum number of p-cliques of graphs, Ann. Univ. Sofia Fac. Math. Méc. 70, 93–98 (1975/76)

    Google Scholar 

  • Norine, S., Seymour, P., Thomas, R., Wollan, P.: Proper minor-closed families are small, J. Combin. Theory Ser. B 96(5), 754–757 (2006)

    Google Scholar 

  • Olejár, D., Toman, E.: On the order and the number of cliques in a random graph, Math. Slovaca 47(5), 499–510 (1997)

    Google Scholar 

  • Papadimitriou, C.H., Yannakakis, M.: The clique problem for planar graphs, Inform. Process. Lett. 13(4–5), 131–133 (1981)

    Google Scholar 

  • Petingi, L., Rodriguez, J.: A new proof of the Fisher-Ryan bounds for the number of cliques of a graph. In: Proc. 31st Southeastern International Conf. on Combinatorics, Graph Theory and Computing, vol. 146 of Congr. Numer. pp. 143–146, 2000

  • Reed, B., Wood, D.R.: Fast separation in a graph with an excluded minor. In: Proc. European Conf. on Combinatorics, Graph Theory and Applications (EuroComb ’05), vol. AE of Discrete Math. Theor. Comput. Sci. Proceedings, pp. 45–50, 2005

  • Roman, S.: The maximum number of q-cliques in a graph with no p-clique, Disc. Math. 14(4), 365–371 (1976)

    Google Scholar 

  • Sagan, B.E., Vatter, V.R.: Maximal and maximum independent sets in graphs with at most r cycles, J. Graph Theory 53(4), 283–314 (2006)

    Google Scholar 

  • Sato, I.: Clique graphs of packed graphs, Disc. Math. 62(1), 107–109 (1986)

    Google Scholar 

  • Sauer, N.: A generalization of a theorem of Turán, J. Comb. Theory Ser. B 10, 109–112 (1971)

    Google Scholar 

  • Schürger, K.: Limit theorems for complete subgraphs of random graphs, Period. Math. Hungar. 10(1), 47–53 (1979)

    Google Scholar 

  • Simonovits, M.: Extremal graph theory. In: Selected Topics in Graph Theory, vol. 2, pp. 161–200, Academic Press, 1983

  • Simonovits, M.: Paul Erdős’ influence on extremal graph theory. In The Mathematics of Paul Erdős, II vol. 14 of Algorithms Combin., pp. 148–192, Springer, 1997

  • Simonovits, M., Sós, V.T.: Ramsey-Turán theory, Disc. Math. 229(1–3), 293–340 (2001)

    Google Scholar 

  • Sitton, D.: Maximum matchings in complete multipartite graphs, Furman Univ. Electronic J. Undergraduate Math. 2, 6–16 (1996)

    Google Scholar 

  • Spencer, J.H.: On cliques in graphs, Israel J. Math. 9, 419–421 (1971)

    Google Scholar 

  • Stiebitz, M.: On Hadwiger’s number—a problem of the Nordhaus-Gaddum type, Disc. Math. 101(1–3), 307–317 (1992)

    Google Scholar 

  • Storch, T.: How randomized search heuristics find maximum cliques in planar graphs. In: Proc. of 8th Annual Conf. on Genetic and Evolutionary Computation (GECCO ’06), pp. 567–574, ACM Press, 2006

  • Thomason, A.: An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95(2), 261–265 (1984)

    Google Scholar 

  • Thomason, A.: The extremal function for complete minors, J. Combin. Theory Ser. B 81(2), 318–338 (2001)

    Google Scholar 

  • Turán, P.: On an extremal problem in graph theory, Mat. Fiz. Lapok 48, 436–452 (1941)

    Google Scholar 

  • Wagner, K.: Über eine Eigenschaft der ebene Komplexe, Math. Ann. 114, 570–590 (1937)

    Google Scholar 

  • West, D.B.: The number of complete subgraphs in graphs with nonmajorizable degree sequences. In: Progress in Graph Theory, pp. 509–521, Academic Press, 1984

  • Wilf, H.S.: The number of maximal independent sets in a tree, SIAM J. Algebraic Disc. Methods 7(1), 125–130 (1986)

    Google Scholar 

  • Ying, G.C., Meng, K.K., Sagan, B.E., Vatter, V.R.: Maximal independent sets in graphs with at most rcycles, J. Graph Theory 53(4), 270–282 (2006)

    Google Scholar 

  • Zykov, A.A.: On some properties of linear complexes, Mat. Sbornik N.S. 24(66), 163–188 (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Wood.

Additional information

Research supported by a Marie Curie Fellowship of the European Community under contract 023865, and by the projects MCYT-FEDER BFM2003-00368 and Gen. Cat 2001SGR00224.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, D.R. On the Maximum Number of Cliques in a Graph. Graphs and Combinatorics 23, 337–352 (2007). https://doi.org/10.1007/s00373-007-0738-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-007-0738-8

Keywords

Navigation