Skip to main content
Log in

A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models

  • Review
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Parameters in diffusion neuronal models are divided into two groups; intrinsic and input parameters. Intrinsic parameters are related to the properties of the neuronal membrane and are assumed to be known throughout the paper. Input parameters characterize processes generated outside the neuron and methods for their estimation are reviewed here. Two examples of the diffusion neuronal model, which are based on the integrate-and-fire concept, are investigated—the Ornstein–Uhlenbeck model as the most common one and the Feller model as an illustration of state-dependent behavior in modeling the neuronal input. Two types of experimental data are assumed—intracellular describing the membrane trajectories and extracellular resulting in knowledge of the interspike intervals. The literature on estimation from the trajectories of the diffusion process is extensive and thus the stress in this review is set on the inference made from the interspike intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aalen O, Gjessing H (2004) Survival models based on the Ornstein-Uhlenbeck process. Lifetime Data Anal 10: 407–423

    Article  PubMed  Google Scholar 

  • Alili L, Patie P, Pedersen J (2005) Representations of the first hitting time density of an Ornstein-Uhlenbeck process. Stochastic Models 21: 967–980

    Article  Google Scholar 

  • Bibby B, Sørensen M (1996) On estimation for discretely observed diffusions: A review. Theory Stochastic Process 2: 49–56

    Google Scholar 

  • Borodin A, Salminen P (2002) Handbook of Brownian motion—Facts and Formulae. Probability and its applications. Birkhauser Verlag, Basel

    Google Scholar 

  • Brillinger D (1988) Maximum likelihood analysis of spike trains of interacting nerve cells. Biol Cybern 59: 189–200

    Article  CAS  PubMed  Google Scholar 

  • Brunel N, van Rossum M (2008) Lapicque’s 1907 paper: from frogs to integrate-and-fire. Biol Cybern 97:337–339

    Article  Google Scholar 

  • Bulsara A, Elston T, Doering C, Lowen S, Lindberg K (1996) Cooperative behavior in periodically driven noisy integrate-and-fire models of neuronal dynamics. Phys Rev E 53: 3958–3969

    Article  CAS  Google Scholar 

  • Burkitt A (2006) A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. Biol Cybern 95: 1–19

    Article  CAS  PubMed  Google Scholar 

  • Clopath C, Jolivet R, Rauch A, Luscher HR, Gerstner W (2007) Predicting neuronal activity with simple models of the threshold type: Adaptive exponential integrate-and-fire model with two compartments. Neurocomput 70: 1668–1673

    Article  Google Scholar 

  • Cox J, Ingersoll J, Ross S (1985) A theory of the term structure of interest rates. Econometrica 53: 385–407

    Article  Google Scholar 

  • Ditlevsen S (2007) A result on the first-passage time of an Ornstein-Uhlenbeck process. Stat Probab Lett 77: 1744–1749

    Article  Google Scholar 

  • Ditlevsen S, Ditlevsen O (2008) Parameter estimation from observations of first-passage times of the Ornstein-Uhlenbeck process and the Feller process. Prob Eng Mech 23: 170–179

    Article  Google Scholar 

  • Ditlevsen S, Lansky P (2005) Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model. Phys Rev E 71:Art. No. 011,907

  • Ditlevsen S, Lansky P (2006) Estimation of the input parameters in the Feller neuronal model. Phys Rev E 73:Art. No. 061,910

  • Ditlevsen S, Lansky P (2007) Parameters of stochastic diffusion processes estimated from observations of first hitting-times: application to the leaky integrate-and-fire neuronal model. Phys Rev E 76:Art. No. 041,906

  • Ditlevsen S, Lansky P (2008) Comparison of statistical methods for estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model from first-passage times data. American Institute of Physics Proceedings Series (to appear)

  • Durbin J (1971) Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test. J Appl Prob 8: 431–453

    Article  Google Scholar 

  • Feller W (1951) Diffusion processes in genetics. In: Neyman J (eds) Proceedings of the second Berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley, pp 227–246

    Google Scholar 

  • Fortet R (1943) Les fonctions aléatories du type de markoff associées à certaines équations lineáires aux dérivées partiell es du type parabolique. J Math pures Appl 22: 177–243

    Google Scholar 

  • Gerstein G, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys J 4: 41–68

    Article  CAS  PubMed  Google Scholar 

  • Giorno V, Lansky P, Nobile A, Ricciardi L (1988) Diffusion approximation and first-passage-time problem for a model neuron. Biol Cybern 58: 387–404

    Article  CAS  PubMed  Google Scholar 

  • Hanson F, Tuckwell H (1983) Diffusion approximations for neuronal activity including synaptic reversal potentials. J Theor Neurobiol 2: 127–153

    Google Scholar 

  • Inoue J, Sato S, Ricciardi L (1995) On the parameter estimation for diffusion models of single neurons activity. Biol Cybern 73: 209–221

    Article  CAS  PubMed  Google Scholar 

  • Johannesma P (1968) Diffusion models for the stochastic activity of neurons. In: Caianiello E (eds) Proceedings of the school on neural networks june 1967 in Ravello. Springer, Berlin, pp 116–144

    Google Scholar 

  • Jolivet R, Rauch A, Luscher HR, Gerstner W (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21: 35–49

    Article  PubMed  Google Scholar 

  • Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008) A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Methods 169: 417–424

    Article  PubMed  Google Scholar 

  • Karlin S, Taylor H (1981) A second course in stochastic processes. Academic Press, San Diego

    Google Scholar 

  • Kostal L, Lansky P, Rospars JP (2007a) Neuronal coding and spiking randomness. Eur J Neurosci 26: 2693–2701

    Article  PubMed  Google Scholar 

  • Kostal L, Lansky P, Zucca C (2007b) Randomness and variability of the neuronal activity described by the Ornstein-Uhlenbeck model. Netw Comput Neural Syst 18: 63–75

    Article  Google Scholar 

  • Kutoyants Y (2003) Statistical inference for ergodic diffusion processes. Springer Series in Statistics, New York

    Google Scholar 

  • Lansky P, Lanska V (1987) Diffusion approximations of the neuronal model with synaptic reversal potentials. Biol Cybern 56: 19–26

    Article  CAS  PubMed  Google Scholar 

  • Lansky P, Sacerdote L, Tomasetti F (1995) On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity. Biol Cybern 73: 457–465

    Article  CAS  PubMed  Google Scholar 

  • Lansky P, Sanda P, He J (2006) The parameters of the stochastic leaky integrate-and-fire neuronal model. J Comput Neurosci 21: 211–223

    Article  PubMed  Google Scholar 

  • Lebedev N (1972) Special functions and their applications. Dover, New York

    Google Scholar 

  • Mullowney P, Iyengar S (2008) Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data. J Comput Neurosci 24: 179–194

    Article  PubMed  Google Scholar 

  • Nobile A, Ricciardi L, Sacerdote L (1985) Exponential trends of Ornstein-Uhlenbeck 1st-passage-time densities. J Appl Prob 22: 360–369

    Article  Google Scholar 

  • Paninski L, Pillow J, Simoncelli E (2004) Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput 16: 2533–2561

    Article  PubMed  Google Scholar 

  • Pawlas Z, Klebanov L, Prokop M, Lansky P (2008) Parameters of spike trains observed in a short time window. Neural Comput (in press)

  • Picchini U, Lansky P, De Gaetano A, Ditlevsen S (2008) Parameters of the diffusion leaky integrate-and fire neuronal model for a slowly fluctuating signal. Neural Comput (to appear)

  • Prakasa Rao B (1999) Statistical inference for diffusion type processes. Arnold

  • Rauch A, G L, Luscher HR, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as integrate-and fire neurons in vivo-like input currents. J Neurophysiol 90: 1598–1612

    Article  PubMed  Google Scholar 

  • Ricciardi L (1977) Diffusion processes and related topics in biology. Springer, Berlin

    Google Scholar 

  • Ricciardi L, Sacerdote L (1979) The Ornstein-Uhlenbeck process as a model of neuronal activity. Biol Cybern 35: 1–9

    Article  CAS  PubMed  Google Scholar 

  • Ricciardi L, Sato S (1988) First-passage-time density and moments of the Ornstein-Uhlenbeck process. J Appl Prob 25: 43–57

    Article  Google Scholar 

  • Ricciardi L, Di Crescenzo A, Giorno V, Nobile A (1999) An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling. Math Japonica 50(2): 247–322

    Google Scholar 

  • Shinomoto S, Sakai Y, Funahashi S (1999) The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Comput 11: 935–951

    Article  CAS  PubMed  Google Scholar 

  • Siegert A (1951) On the first passage time probability problem. Phys Rev 81: 617–623

    Article  Google Scholar 

  • Tuckwell H (1988) Introduction to theoretical neurobiology, vol. 2: Nonlinear and stochastic theories. Cambridge University Press, Cambridge

    Google Scholar 

  • Tuckwell H, Richter W (1978) Neuronal interspike time distributions and the estimation of neurophysiological and neuroanatomical parameters. J Theor Biol 71: 167–180

    Article  CAS  PubMed  Google Scholar 

  • Wan F, Tuckwell H (1982) Neuronal firing and input variability. J Theoret Neurobiol 1: 197–218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Ditlevsen.

Additional information

Supported by grants from the Danish Medical Research Council and the Lundbeck Foundation to S. Ditlevsen, and the Center for Neurosciences LC554, AV0Z50110509 and Academy of Sciences of the Czech Republic (Information Society, 1ET400110401) to P. Lansky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lansky, P., Ditlevsen, S. A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models. Biol Cybern 99, 253–262 (2008). https://doi.org/10.1007/s00422-008-0237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0237-x

Keywords

Navigation