Skip to main content
Log in

On the Planar Piecewise Quadratic 1-Center Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper we introduce a minimax model unifying several classes of single facility planar center location problems. We assume that the transportation costs of the demand points to the serving facility are convex functions {Q i }, i=1,…,n, of the planar distance used. Moreover, these functions, when properly transformed, give rise to piecewise quadratic functions of the coordinates of the facility location. In the continuous case, using results on LP-type models by Clarkson (J. ACM 42:488–499, 1995), Matoušek et al. (Algorithmica 16:498–516, 1996), and the derandomization technique in Chazelle and Matoušek (J. Algorithms 21:579–597, 1996), we claim that the model is solvable deterministically in linear time. We also show that in the separable case, one can get a direct O(nlog n) deterministic algorithm, based on Dyer (Proceedings of the 8th ACM Symposium on Computational Geometry, 1992), to find an optimal solution. In the discrete case, where the location of the center (server) is restricted to some prespecified finite set, we introduce deterministic subquadratic algorithms based on the general parametric approach of Megiddo (J. ACM 30:852–865, 1983), and on properties of upper envelopes of collections of quadratic arcs. We apply our methods to solve and improve the complexity of a number of other location problems in the literature, and solve some new models in linear or subquadratic time complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amenta, N.: Helly-type theorems and generalized linear programming. Ph.D. dissertation, University of California, Berkeley (1993)

  2. Amenta, N.: Helly-type theorems and generalized linear programming. Discrete Comput. Geom. 12, 241–261 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Basu, S., Pollack, R., Roy, M.-F.: On the combinatorial and algebraic complexity of quantifier elimination. J. ACM 43, 1002–1045 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. MPS-SIAM Series on Optimization (2001)

  5. Berger, M.: Geometry, I and II. Serie Universitext. Springer, Berlin (2004). Corrected 3rd printing

    Google Scholar 

  6. Berman, O., Drezner, Z., Wesolowsky, G.O.: The collection depot location problem on networks. Nav. Res. Logist. 49, 292–318 (2002)

    MathSciNet  Google Scholar 

  7. Blakey, J.: University Mathematics. Blakie and Son, London (1957)

    Google Scholar 

  8. Brimberg, J., Wesolowsky, G.O.: Locating facilities by minimax relative to closest points of demand areas. Comput. Oper. Res. 29, 625–636 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chan, A., Hearn, D.W.: A rectilinear distance round-trip location problem. Transp. Sci. 11, 107–123 (1977)

    Article  Google Scholar 

  10. Chazelle, B., Matoušek, J.: On linear-time deterministic algorithms for optimization problems in fixed dimension. In: Proceedings of the 4th ACM Symposium on Discrete Algorithms, Austin, TX, pp. 281–290 (1993). Also J. Algorithms 21, 579–597 (1996)

  11. Clarkson, K.L.: Linear programming in \(O(n3^{d^{2}})\) time. Inf. Process. Lett. 22, 21–24 (1986)

    Article  MathSciNet  Google Scholar 

  12. Clarkson, K.L.: Las Vegas algorithms for linear programming and integer programming when the dimension is small. J. ACM 42, 488–499 (1995)

    MATH  MathSciNet  Google Scholar 

  13. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J. ACM 34, 200–208 (1987)

    MathSciNet  Google Scholar 

  14. Cole, R.: Parallel merge sort. SIAM J. Comput. 17, 770–785 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Drezner, Z., Wesolowsky, G.O.: On the collection depot location problem. Eur. J. Oper. Res. 130, 510–518 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Drezner, Z., Stein, G., Wesolowsky, G.O.: One-facility location with rectilinear tour distances. Nav. Res. Logist. Q. 32, 391–405 (1985)

    Article  MATH  Google Scholar 

  17. Dyer, M.E.: On a multidimensional search procedure and its application to the Euclidean one-centre problem. SIAM J. Comput. 15, 725–738 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dyer, M.E.: A class of convex programs with applications to computational geometry. In: Proceedings of the 8th ACM Symposium on Computational Geometry, pp. 9–15 (1992)

  19. Elzinga, J., Hearn, D.W.: The minimum covering sphere problem. Manag. Sci. 19, 96–104 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  20. Elzinga, J., Hearn, D.W.: Geometrical solutions for some minimax location problems. Transp. Sci. 96, 379–394 (1972)

    Article  MathSciNet  Google Scholar 

  21. Fernández, F.R., Nickel, S., Puerto, J., Rodríguez-Chía, A.M.: Robustness in the Pareto-solutions for the multi-criteria minisum location problem. J. Multi-Criteria Dec. Anal. 10, 191–203 (2001)

    Article  MATH  Google Scholar 

  22. Foul, A.: A 1-center problem on the plane with uniformly distributed demand points. Oper. Res. Lett. 34, 264–268 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Frenk, J.B., Gromicho, J., Zhang, S.: General models in min-max continuous location: Theory and solution techniques. J. Optim. Theory Appl. 89, 39–63 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Frenk, J.B., Gromicho, J., Zhang, S.: General models in min-max planar location: Checking optimality conditions. J. Optim. Theory Appl. 89, 65–87 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Goodrich, M.: Approximation algorithms to design parallel algorithms that may ignore processor allocation. In: Proceedings 32-nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 711–722 (1991)

  26. Halman, N.: Discrete and lexicographic Helly theorems and their relations to LP-type problems. Ph.D. dissertation, Tel Aviv University (2004)

  27. Halman, N.: On the algorithmic aspects of discrete and lexicographic Helly-type theorems and the discrete LP-type model. SIAM J. Comput. 38, 1–45 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lee, D.T., Wu, Y.F.: Geometric complexity of some location problems. Algorithmica 1, 193–212 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  29. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16, 498–516 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Megiddo, N.: Linear time algorithms for linear programming in R 3 and related problems. SIAM J. Comput. 12, 759–776 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  31. Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM 30, 852–865 (1983)

    MATH  MathSciNet  Google Scholar 

  32. Megiddo, N.: Linear programming in linear time when dimension is fixed. J. ACM 31, 114–127 (1984)

    MATH  MathSciNet  Google Scholar 

  33. Megiddo, N.: On the ball spanned by balls. Discrete Comput. Geom. 4, 605–610 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nickel, S., Puerto, J., Rodríguez-Chía, A.M.: An approach to location models involving sets as existing facilities. Math. Oper. Res. 28, 693–715 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ogryczak, W., Tamir, A.: Mimimizing the sum of the k-largest functions in linear time. Inf. Process. Lett. 85, 117–122 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ohsawa, Y.: A geometrical solution for quadratic bicriteria location models. Eur. J. Oper. Res. 114, 380–388 (1999)

    Article  MATH  Google Scholar 

  37. Puerto, J., Tamir, A., Mesa, J.A., Perez-Brito, D.: Center location problems on tree graphs with subtree-shaped customers. Discrete Appl. Math. doi:10.1016/j.dam.2007.11022

  38. Renegar, J.: A faster PSPACE algorithm for deciding the existential theory of the reals. In: Proc. 29th IEEE Symposium on Foundations of Computer Science, pp. 291–295 (1988)

  39. Renegar, J.: On the computational complexity and geometry of the first order theory of the reals. J. Symb. Comput. 13, 255–352 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  41. Sharir, M., Agarwal, P.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  42. Tamir, A., Halman, N.: One-way and round-trip center location problems. Discrete Optim. 2, 168–184 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  43. Toledo, S.: Maximizing non-linear concave functions in fixed dimension. In: Proceedings 33rd Annual Symposium on Foundations of Computer Science, pp. 676–685 (1992)

  44. Toledo, S.: Maximizing non-linear concave functions in fixed dimension. In: Pardalos, P.M. (ed.) Complexity in Numerical Computations, pp. 429–447. World Scientific, Singapore (1993)

    Google Scholar 

  45. Zemel, E.: An O(n) algorithm for the linear multiple choice knapsack problem and related problems. Inf. Process. Lett. 18, 123–128 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  46. Zhou, G., Toh, K.C., Sun, J.: Efficient algorithms for the smallest enclosing ball problem. Comput. Optim. Appl. 30, 147–160 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tamir.

Additional information

This work was partially supported by the Spanish Ministry of Science and Education grant number MTM2007-67433-C02-01,02, P06-FQM-01366, P06-FQM-01364.

The work of the third author was supported by the Spanish Ministry of Science and Education grant number SAB2005-0095.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puerto, J., Rodríguez-Chía, A.M. & Tamir, A. On the Planar Piecewise Quadratic 1-Center Problem. Algorithmica 57, 252–283 (2010). https://doi.org/10.1007/s00453-008-9210-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9210-2

Keywords

Navigation