Skip to main content
Log in

Coupling subdomains with heterogeneous time integrators and incompatible time steps

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The work presented in this publication can be categorized among domain decomposition methods of the dual Schur type applied to structural dynamics. This approach leads to lower CPU times and better control of the accuracy of the time discretization and allows to take into account multi-time-scale effects which arise in transient structural dynamics. In order to consider incompatible time scales, one has to enforce continuity at the interfaces between the subdomains. Here, we propose a general formalism which enables the coupling of subdomains with their own numerical time integration scheme. The proposed method enables one to take into account possible nonlinearities which may present different time scale between the subdomains in a general manner for a wide range of time numerical scheme. This method also offers an important improvement for industrial software with easy implementation. Linear and nonlinear numerical examples are proposed in order to show the efficiency and the robustness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belytschko T, Mullen R (1976) Mesh partitions of explicit-implicit time integration In: Proceedings US–Germany symposium on formulations and computationnal algoritms in finite element analysis

  2. Belytschko T, Mullen R (1978) Stability of explicit-implicit mesh partitions in time integration. Int J Numer Methods Eng 12: 1575–1586

    Article  MATH  Google Scholar 

  3. Liu WK, Belytschko T (1982) Mixed-time implicit-explicit finite elements for transient analysis. Comput Struct 15: 445–450

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu WK, Belytschko T, Zhang YF (1984) Implementation and accuracy of mixed-time implicit-explicit methods for structural dynamics. Comput Struct 19: 521–530

    Article  MATH  Google Scholar 

  5. Belytschko T, Liu WK, Smolinski P (1987) Stability of multi-time step partitioned transient analysis for first-order systems of equation. Comput Methods Appl Mech Eng 65: 115–125

    Article  MATH  Google Scholar 

  6. Ben Dhia H. (1998) Multiscale mechanical problems: the Arlequin method. Comptes Rendus de l’Académie des Sci Ser IIB Mech Phys Astron 12: 899–904

    Article  Google Scholar 

  7. Bourel B (2006) Calcul multi-domaines et approches multi-échelles pour la simulation de crashs automobiles, Thèse de doctorat. Institut National des Sciences Appliquées de Lyon

  8. Bourel B, Combescure A, Valentin LD (2006) Handling contact in multi-domain simulation of automobile crashes. Finite Elements Analy Des 42: 766–779

    Article  Google Scholar 

  9. Cavin P, Gravouil AA, Combescure A (2005) Automatic energy conserving space-time refinement for linear dynamic structural problems. Int J Numer Methods Eng 50: 304–321

    Article  MathSciNet  Google Scholar 

  10. Combescure A, Gravouil A (2002) A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis. Comput Methods Appl Mech Eng 191: 1129–1157

    Article  MATH  Google Scholar 

  11. Daniel WJT (1998) A study of the stability of subcycling algorithms in structural dynamics. Comput Methods Appl Mech Eng 156: 1–13

    Article  MathSciNet  MATH  Google Scholar 

  12. Dodds JRH, Lopez LA (1980) Substructuring in linear and nonlinear analysis. Int J Numer Methods Eng 15: 583–597

    Article  MATH  Google Scholar 

  13. Farhat C, Roux F-X (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32: 1205–1227

    Article  MATH  Google Scholar 

  14. Farhat C, Crivelli L, Geradin M (1993) On the spectral stability of time integration algorithms for a class of constrained dynamics problems. In: Collection of technical papers AIAA/ASME structures, structural dynamics and materials conference. AIAA: Washington DC, USA, pp 80–97

  15. Farhat C, Crivelli L, Roux F-X (1994) Transient FETI methodology for large-scale parallel implicit computations in structural mechanics. Int J Numer Methods Eng 37: 1945–1975

    Article  MathSciNet  MATH  Google Scholar 

  16. Faucher V, Combescure A (2004) Local modal reduction in explicit dynamics with domain decomposition. Part 1: extension to subdomains undergoing finite rigid rotations. Int J Numer Methods Eng 60: 2531–2560

    Article  MATH  Google Scholar 

  17. Gérardin M, Rixen D (1996) Théorie des vibrations—application à la dynamique des structures (2ème édition). Masson Editions, Paris

    Google Scholar 

  18. Glowinski R, Le Tallec P (1990) Augmented lagrangian interpretation of the non-overlapping schwarz alternating method In: Domain decomposition method. SIAM, Philadelphia, pp 224–231

  19. Gravouil A (2000) Méthode multi-échelles en temps et en espace avec décomposition de domaines pour la dynamique non linéaire des structures. Thèse de doctorat. Ecole Normale Supérieure de Cachan

  20. Gravouil A, Combescure A (2001) A multi-time-step explicit-implicit method for non-linear structural dynamics. Int J Numer Methods Eng 50: 199–225

    Article  MATH  Google Scholar 

  21. Herry B (2002) Développement dune approche multiéchelle parallèle pour la simulation de crash automobile non linéaire des structures. Thèse de doctorat. Ecole Normale Supérieure de Cachan

  22. Herry B, Di Valentin L, Combescure A (2002) An approach to the connection between subdomains with non-matching meshes for transient mechanical analysis. Int J Numer Methods Eng 55: 973–1003

    Article  MATH  Google Scholar 

  23. Hughes TJR, Liu WK (1978) Implicit-Explicit finite elements in transient analysis: stability theory. ASME J Appl Mech 45: 371–374

    MATH  Google Scholar 

  24. Hughes TJR, Liu WK (1978) Implicit-Explicit finite elements in transient analysis: implementation and numerical examples. ASME J Appl Mech 45: 375–378

    MATH  Google Scholar 

  25. Joly P, Rodrìguez J (2005) An error analysis of conservative space-time mesh refinement methods for the 1D wave equation. SIAM J Numer Anal 43: 825–859

    Article  MathSciNet  MATH  Google Scholar 

  26. Krenk S (2007) Energy conservation and high-frequency damping in numerical time integration. In: Computational Methods in Structural Dynamics and Earthquake Engineering; Rethymno, Crete, Greece, 12

  27. Magoules F, Roux FX (2006) Lagrangian formulation of domain decomposition methods: a unified theory. Appl Math Model 30: 593–615

    Article  MATH  Google Scholar 

  28. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div ASCE 85: 67–94

    Google Scholar 

  29. Prakash A, Hjelmstad KD (2004) A FETI-based multi-time-step coupling method for Newmark schemes in structural dynamics. Int J Numer Methods Eng 61: 2183–2204

    Article  MATH  Google Scholar 

  30. Schwarz HA (1870) Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrssch der Naturforsch Ges Zür 15: 272–286

    Google Scholar 

  31. Simo JC, Wong KK (1991) Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int J Numer Methods Eng 31: 19–52

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Combescure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahjoubi, N., Gravouil, A. & Combescure, A. Coupling subdomains with heterogeneous time integrators and incompatible time steps. Comput Mech 44, 825–843 (2009). https://doi.org/10.1007/s00466-009-0413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0413-4

Keywords

Navigation