Skip to main content
Log in

Multifractality in space–time statistical models

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper introduces two families of space–time random models with multifractal spatial characteristics, respectively generated in continuous and discrete time, and both defined on multifractal spatial domains. The definition of the first class is given in terms of a Feller semigroup generated by a pseudodifferential operator of variable order. In the second case, the spatial process at time t + 1 is obtained by applying a variable order blurring operator to the spatial process at time t and adding the innovation given by a spatiotemporal process uncorrelated in time. Spatial multifractal properties of the two classes of space–time processes introduced are analyzed. The implementation of space–time filtering and prediction techniques is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler RJ (1981) The geometry of random fields. Wiley, New York

  • Angulo JM, Ruiz-Medina MD, Anh VV, Grecksch W (2000) Fractional diffusion and fractional heat equation. Adv Appl Probab 32:1077–1099

    Article  Google Scholar 

  • Anh VV, Leonenko NN (2001) Spectral analysis of fractional kinetic equations with random data. J Stat Phys 104:1349–1387

    Article  Google Scholar 

  • Anh VV, Leonenko NN (2002) Renormalization and homogenization of fractional diffusion equations with random data. Probab Theory Relat Fields 124:381–408

    Article  Google Scholar 

  • Anh VV, Angulo JM, Ruiz-Medina MD (1999) Possible long-range dependence in fractional random fields. J Stat Plan Inference 80:95–110

    Article  Google Scholar 

  • Bogaert P (1996) Comparison of kriging techniques in a space–time context. Math Geol 28:73–86

    Article  Google Scholar 

  • Brown PE, Karesen KF, Roberts GO, Tonellato S (2000) Blur-generated non-separable space–time models. J R Stat Soc B 62:847–860

    Article  Google Scholar 

  • Chiles JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

  • Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New York

  • Christakos G, Hristopulos DT (1998) Spatiotemporal environmental health modelling. Kluwer, Dordrecht

  • Epperson BK (2000) Spatial and space–time correlations in ecological models. Ecol Model 132:63–76

    Article  Google Scholar 

  • Falconer KJ (1990) The geometry of fractal sets. Cambridge University Press, Cambridge

  • Glasbey CA, Graham R, Hunter AGM (2001) Spatio-temporal variability of solar energy across a region: a statistical modelling approach. Solar Energy 70:373–381

    Article  Google Scholar 

  • Goitía A, Ruiz-Medina MD, Angulo JM (2004) Joint estimation of spatial deformation and blurring in environmental data. Stoch Environ Res Risk Assess 19:1–7

    Article  Google Scholar 

  • Haslett J, Raftery AE (1989) Space–time modeling with long-memory dependence: Assessing Ireland’s wind power resource (with discussion). Appl Stat 38:1–50

    Article  Google Scholar 

  • Huang HC, Cressie N (1996) Spatio-temporal prediction of snow water equivalent using the Kalman filter. Comput Stat Data Anal 22:159–175

    Article  Google Scholar 

  • Jacob N, Leopold H-G (1993) Pseudo differential operators with variable order of differentiation generating Feller semigroup. Integr Equ Oper Theory 17:544–553

    Article  Google Scholar 

  • Kikuchi K, Negoro A (1997) On Markov processes generated by pseudodifferentail operator of variable order. Osaka J Math 34:319–335

    Google Scholar 

  • Kyriakidis PC, Journel AG (1999) Geostatistical space–time models: a review. Math Geol 31:651–684

    Article  Google Scholar 

  • Mardia KV, Goodall C, Redfern EJ, Alonso FJ (1998) The Kriged Kalman filter. Test 7:217–287

    Article  Google Scholar 

  • Mattila P (1995) Geometry of sets and measures in euclidean spaces. Cambridge University Press, Cambridge

  • Ruiz-Medina MD, Angulo JM (1999) Stochastic multiresolution approach to the inverse problem for image sequences. In: Mardia KV, Aykroyd RG, Dryden IL (eds) Proceedings in spatial temporal modelling and its applications. Leeds University Press, Leeds, pp 57–60

    Google Scholar 

  • Ruiz-Medina MD, Angulo JM (2002) Spatio-temporal filtering using wavelets. Stoch Environ Res Risk Assess 16:241–266

    Article  Google Scholar 

  • Ruiz-Medina MD, Anh VV, Angulo JM (2001) Stochastic fractional-order differential models with fractal boundary conditions. Stat Probab Lett 54:47–60

    Article  Google Scholar 

  • Ruiz-Medina MD, Angulo JM, Anh VV (2002) Stochastic fractional-order differential models on fractals. Theory Probab Math Stat 67:130–146

    Google Scholar 

  • Ruiz-Medina MD, Alonso FJ, Angulo JM, Bueso MC (2003a) Functional stochastic modeling and prediction of spatio-temporal processes. J Gephys Res Atmospheres 108(D24):9003, doi: 10.1029/2003JD003416

    Article  Google Scholar 

  • Ruiz-Medina MD, Angulo JM, Anh VV (2003b) Fractional-order regularization and wavelet approximation to the inverse estimation problem for random fields. J Multivariate Anal 85:192–216

    Article  Google Scholar 

  • Ruiz-Medina MD, Anh VV, Angulo JM (2004a) Fractional generalized random fields of variable order. Stoch Anal Appl 22:775–800

    Article  Google Scholar 

  • Ruiz-Medina MD, Anh VV, Angulo JM (2004b) Fractal random fields on domains with fractal boundary. Infinite Dimensional Anal Quantum Probab Relat Topics 7:395–417

    Article  Google Scholar 

  • Sansó B, Guenni L (1999) Venezuelan rainfall data analysed by using a Bayesian space–time model. Appl Stat 48:345–362

    Google Scholar 

  • Triebel H (1997) Fractals and spectra. Birkhäuser, Secaucus.

  • Uritsky VM, Klimas AJ, Vassiliadis D, Chua D, Parks G (2002) Scale-free statistics of spatiotemporal auroral emissions as depicted by POLAR UVI images: dynamic magnetosphere is an avalanching system. J Gephys Res 107(A12):1426–1436

    Article  Google Scholar 

  • Wikle K, Cressie N (1999) A dimension-reduction approach to space–time Kalman filtering. Biometrika 86:815–829

    Article  Google Scholar 

  • Wikle CK, Milliff RF, Nychka D, Berliner LM (2001) Spatiotemporal hierarchical Bayesian modeling: tropical ocean surface winds. JASA 96:382–397

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by projects BFM2002-01836 and MTM2005-08597 of the DGI, and P05-FQM-00990 of the Andalousian CICE, Spain, and ARC grant A69804041 and NSF CMG grant 0417676.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Ruiz-Medina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Medina, M.D., Angulo, J.M. & Anh, V.V. Multifractality in space–time statistical models. Stoch Environ Res Risk Assess 22 (Suppl 1), 81–86 (2008). https://doi.org/10.1007/s00477-007-0155-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-007-0155-9

Keywords

Navigation