Skip to main content
Log in

Product set estimates for non-commutative groups

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We develop the Plünnecke-Ruzsa and Balog-Szemerédi-Gowers theory of sum set estimates in the non-commutative setting, with discrete, continuous, and metric entropy formulations of these estimates. We also develop a Freiman-type inverse theorem for a special class of 2-step nilpotent groups, namely the Heisenberg groups with no 2-torsion in their centre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Balog and E. Szemerédi: A statistical theorem of set addition, Combinatorica 14(3) (1994), 263–268.

    Article  MATH  MathSciNet  Google Scholar 

  2. Y. Bilu: Structure of sets with small sumset, in: Structure theory of set addition, Astérisque No. 258 (1999), xi, 77–108.

    MathSciNet  Google Scholar 

  3. J. Bourgain: On the dimension of Kakeya sets and related maximal inequalities, Geom. Func. Anal. 9 (1999), 256–282.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Bourgain: Estimates on exponential sums related to the Diffie-Hellman distributions, Geom. Funct. Anal. 15(1) (2005), 1–34.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Bourgain: Mordell’s exponential sum estimate revisited, J. Amer. Math. Soc. 18(2) (2005), 477–499.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Bourgain, N. Katz and T. Tao: A sum-product estimate in finite fields, and applications; Geom. Func. Anal. 14 (2004), 27–57.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Bourgain and S. Konyagin: Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order, C. R. Acad. Sci. Paris, Ser. I 337 (2003), 75–80.

    MATH  MathSciNet  Google Scholar 

  8. L. V. Brailovsky and G. A. Freiman: On a product of finite subsets in a torsionfree group, J. Algebra 130 (1990), 462–476.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Chang: A polynomial bound in Freiman’s theorem, Duke Math. J. 113(3) (2002), 399–419.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. C. Chang: On problems of Erdös and Rudin, J. Funct. Anal. 207 (2004), 444–460.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Elekes: On linear combinatorics I, Combinatorica 17(4) (1997), 447–458.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Elekes: On linear combinatorics II, Combinatorica 18(1) (1998), 13–25.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Elekes: On linear combinatorics III, Combinatorica 19(1) (1999), 43–53.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Elekes and Z. Király: On combinatorics of projective mappings, J. Alg. Combin. 14 (2001), 183–197.

    Article  MATH  Google Scholar 

  15. G. Elekes and I. Z. Ruzsa: The structure of sets with few sums along a graph, J. Combin. Theory Ser. A 113(7) (2006), 1476–1500.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Freiman: Foundations of a structural theory of set addition (Translated from the Russian), Translations of Mathematical Monographs, Vol. 37, American Mathematical Society, Providence, R. I., 1973, vii+108 pp.

    Google Scholar 

  17. T. Gowers: A new proof of Szemerédi’s theorem for arithmetic progressions of length four, Geom. Func. Anal. 8 (1998), 529–551.

    Article  MATH  MathSciNet  Google Scholar 

  18. T. Gowers: A new proof of Szemeredi’s theorem, Geom. Func. Anal. 11 (2001), 465–588.

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Green: Finite field models in arithmetic combinatorics, preprint.

  20. B. Green and I. Z. Ruzsa: Freiman’s theorem in an arbitrary abelian group, J. London Math. Soc. 75(1) (2007), 163–175.

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Green and T. Tao: Compressions, Convex Geometry and the Freiman-Bilu Theorem; Q. J. Math. 57(4) (2006), 495–504.

    Article  MATH  MathSciNet  Google Scholar 

  22. H. Helfgott: Growth and generation in SL2(Z/pZ), Ann. Math., accepted (2007). arXiv:math/0509024.

  23. Y. Hamidoune, A. S. Lladó and O. Serra: On subsets with small product in torsion-free groups, Combinatorica 18(4) (1998), 529–540.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Laczkovich and I. Z. Ruzsa: The number of homothetic subsets, in: The Mathematics of Paul Erdős (Graham and Nešetřil eds.), Springer, 1996.

  25. E. Lindenstrauss: Pointwise theorems for amenable groups, Invent. Math. 146(2) (2001), 259–295.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. H. B. Kemperman: On complexes in a semigroup, Indag. Math. 18 (1956), 247–254.

    MathSciNet  Google Scholar 

  27. V. Milman: Entropy and asymptotic geometry of non-symmetric convex bodies, Adv. in Math. 152 (2000), 314–335.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Nathanson: Additive number theory. Inverse problems and the geometry of sumsets, Graduate Texts in Mathematics 165, Springer-Verlag, New York, 1996.

    Google Scholar 

  29. H. Plünnecke: Eigenschaften und Abschätzungen von Wirkungsfunktionen, BMwFGMD-22 Gesellschaft für Mathematik und Datenverarbeitung, Bonn, 1969.

  30. I. Z. Ruzsa: Sums of finite sets, in: Number Theory (D. V. Chudnovsky, G. V. Chudnovsky and M. B. Nathanson, editors), Springer-Verlag, New York, 1996, pp. 281–293.

    Google Scholar 

  31. I. Z. Ruzsa: Generalized arithmetical progressions and sumsets, Acta Math. Hungar. 65(4) (1994), 379–388.

    Article  MATH  MathSciNet  Google Scholar 

  32. I. Z. Ruzsa: An analog of Freiman’s theorem in groups, in: Structure theory of set addition, Astérisque No. 258 (1999), 323–326.

    MathSciNet  Google Scholar 

  33. I. Z. Ruzsa and S. Turjányi: A note on additive bases of integers, Publ. Math. Debrecen 32 (1985), 101–104.

    MATH  MathSciNet  Google Scholar 

  34. B. Sudakov, E. Szemerédi and V. H. Vu: On a question of Erd?os and Moser, Duke Math. J. 129(1) (2005), 129–155.

    Article  MATH  MathSciNet  Google Scholar 

  35. T. Tao: Non-commutative sum set estimates, unpublished.

  36. T. Tao and V. H. Vu: Additive Combinatorics, Cambridge University Press, Cambridge, 2006, 530 pp.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence Tao.

Additional information

T. Tao is supported by a grant from the Packard Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, T. Product set estimates for non-commutative groups. Combinatorica 28, 547–594 (2008). https://doi.org/10.1007/s00493-008-2271-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-008-2271-7

Mathematics Subject Classification (2000)

Navigation