Skip to main content
Log in

Two classes of passive time-varying well-posed linear systems

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We investigate two classes of time-varying well-posed linear systems. Starting from a time-invariant scattering-passive system, each of the time-varying systems is constructed by introducing a time-dependent inner product on the state space and modifying some of the generating operators. These classes of linear systems are motivated by physical examples such as the electromagnetic field around a moving object. To prove the well-posedness of these systems, we use the Lax–Phillips semigroup induced by a well-posed linear system, as in scattering theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acquistapace P, Terreni B (1999) Classical solutions of nonautonomous Riccati equations arising in parabolic boundary control problems. Appl Math Optim 39: 361–409

    Article  MATH  MathSciNet  Google Scholar 

  2. Arov DZ, Nudelman MA (1996) Passive linear stationary dynamical scattering systems with continuous time. Integral Equ Oper Theory 24: 1–45

    Article  MATH  MathSciNet  Google Scholar 

  3. Colombini F, Del Santo D, Kinoshita T (2002) Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients. Ann Sc Norm Super Pisa Cl Sci (5) 1: 327–358

    MATH  MathSciNet  Google Scholar 

  4. Curtain RF, Pritchard AJ (1978) Infinite dimensional linear systems theory. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  5. Dautray R, Lions J-L (1990) Mathematical analysis and numerical methods for science and technology: spectral theory and applications, vol 3. Springer-Verlag, Berlin

    Google Scholar 

  6. Eller M (2008) Symmetric hyperbolic systems with boundary conditions that do not satisfy the Kreiss-Sakamoto condition. Appl Math (Warsaw) 35: 323–333

    Article  MATH  MathSciNet  Google Scholar 

  7. Engel K-J, Nagel R (2000) One-parameter semigroups for linear evolution equations. Springer-Verlag, New York

    MATH  Google Scholar 

  8. Fattorini HO (1983) The Cauchy problem. Addison-Wesley, Reading

    MATH  Google Scholar 

  9. Hinrichsen D, Pritchard AJ (1994) Robust stability of linear evolution operators on Banach spaces. SIAM J Control Optim 32: 1503–1541

    Article  MATH  MathSciNet  Google Scholar 

  10. Jacob B (1995) Time-varying infinite dimensional state-space systems. PhD thesis, Bremen, May 1995

  11. Kato T (1970) Linear evolution equations of “hyperbolic” type. J Fac Sci Univ Tokyo 17: 241–258

    MATH  Google Scholar 

  12. Kato T (1973) Linear evolution equations of “hyperbolic” type II. J Math Soc Jpn 25: 648–666

    Article  MATH  Google Scholar 

  13. Kubo A, Reissig M (2003) Construction of parametrix to strictly hyperbolic Cauchy problems with fast oscillations in non Lipschitz coefficients. Comm Partial Differ Equ 28: 1471–1502

    Article  MATH  MathSciNet  Google Scholar 

  14. Lax P, Phillips R (1967) Scattering theory. Academic Press, New York

    MATH  Google Scholar 

  15. Malinen J, Staffans OJ, Weiss G (2006) When is a linear system conservative?. Q Appl Math 64: 61–91

    MATH  MathSciNet  Google Scholar 

  16. Okazawa N (1998) Remarks on linear evolution equations of hyperbolic type in Hilbert space. Adv Math Sci Appl Tokyo 8: 399–423

    MATH  MathSciNet  Google Scholar 

  17. Rodríguez-Bernal A, Zuazua E (1995) Parabolic singular limit of a wave equation with localized boundary damping. Discrete Contin Dyn Syst 1: 303–346

    Article  MATH  Google Scholar 

  18. Salamon D (1987) Infinite dimensional systems with unbounded control and observation: a functional analytic approach. Trans Am Math Soc 300: 383–431

    MATH  MathSciNet  Google Scholar 

  19. Schnaubelt R (2002) Feedbacks for nonautonomous regular linear systems. SIAM J Control Optim 41: 1141–1165

    Article  MATH  MathSciNet  Google Scholar 

  20. Schnaubelt R (2002) Well-posedness and asymptotic behaviour of non-autonomous linear evolution equations. In: Lorenzi A, Ruf B (eds) Evolution equations, semigroups and functional analysis. Birkhäuser, Basel, pp 311–338

    Google Scholar 

  21. Staffans OJ (2002) Passive and conservative continuous-time impedance and scattering systems. Part I: well-posed systems. Math Control Signals Syst 15: 291–315

    Article  MATH  MathSciNet  Google Scholar 

  22. Staffans OJ (2004) Well-posed linear systems. Cambridge University Press, Cambridge

    Google Scholar 

  23. Staffans OJ, Weiss G (2002) Transfer functions of regular linear systems. Part II: the system operator and the Lax-Phillips semigroup. Trans Am Math Soc 354: 3329–3362

    Article  MathSciNet  Google Scholar 

  24. Tanabe H (1979) Equations of evolution. Pitman, London

    MATH  Google Scholar 

  25. Tucsnak M, Weiss G (2003) How to get a conservative well-posed linear system out of thin air. Part I: well-posedness and energy balance. ESAIM Control Optim Calc Var 9: 247–274

    MathSciNet  Google Scholar 

  26. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Birkhäuser Verlag, Basel

    Book  MATH  Google Scholar 

  27. Weiss G (1994) Transfer functions of regular linear systems. Part I: characterizations of regularity. Trans Am Math Soc 342: 827–854

    Article  MATH  Google Scholar 

  28. Weiss G, Staffans OJ, Tucsnak M (2001) Well-posed linear systems—a survey with emphasis on conservative systems. Appl Math Comput Sci 11: 101–127

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Schnaubelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnaubelt, R., Weiss, G. Two classes of passive time-varying well-posed linear systems. Math. Control Signals Syst. 21, 265–301 (2010). https://doi.org/10.1007/s00498-010-0049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-010-0049-0

Keywords

Navigation