Skip to main content
Log in

Singularly perturbed nonlinear elliptic problems on manifolds

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \({\cal M}\) be a connected compact smooth Riemannian manifold of dimension \(n \ge 3\) with or without smooth boundary \(\partial {\cal M}.\) We consider the following singularly perturbed nonlinear elliptic problem on \({\cal M}\)

$$ \varepsilon^2 \Delta_{{\cal M}} u - u + f(u)=0, \ \ u > 0 \quad {\rm on} \quad {\cal M}, \quad \frac{\partial u}{\partial \nu}=0 {\rm on } \partial {\cal M} $$

where \(\Delta_{{\cal M}}\) is the Laplace-Beltrami operator on \({\cal M} \), \(\nu\) is an exterior normal to \(\partial {\cal M}\) and a nonlinearity \(f\) of subcritical growth. For certain \(f,\) there exists a mountain pass solution \(u_\varepsilon\) of above problem which exhibits a spike layer. We are interested in the asymptotic behaviour of the spike layer. Without any non-degeneracy condition and monotonicity of \(f(t)/t,\) we show that if \(\partial {\cal M} =\emptyset(\partial {\cal M} \ne \emptyset),\) the peak point \(x_\varepsilon\) of the solution \(u_\varepsilon\) converges to a maximum point of the scalar curvature \(S\) on \({\cal M}\)(the mean curvature \(H\) on \(\partial {\cal M})\) as \(\varepsilon \to 0,\)respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  2. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82, 313–345 (1983).

    MathSciNet  MATH  Google Scholar 

  3. Byeon, J.: Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains. Comm. in P. D. E. 22, 1731–1769 (1997).

    MathSciNet  MATH  Google Scholar 

  4. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press (1984).

  5. Del Pino, M., Felmer, P.L.: Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting. Indiana Univ. Math. J. 48, 883–898 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  6. Escobar, F.: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary. Annal. Math. 136, 1–50 (1992).

    MathSciNet  MATH  Google Scholar 

  7. Gidas, B., Ni, W.N., Nirenberg, L.: Symmetry and related properties via teh maximum principle. Comm. Math. Phys. 68, 209–243 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order; second edition. Grundlehren 224, Springer, Berlin, Heidelberg, New York and Tokyo (1983).

    Google Scholar 

  9. Jeanjean, L., Tanaka, K.: A remark on least energy solutions in R N. Proc. Amer. Math. Soc. 131, 2399–2408 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  10. Kwong, K.M.: Uniqueness of positive solutions of Δ uu+u p = 0 in R n. Arch. Rat. Mech. Anal. 105, 243–266 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Y.Y., Nirenberg, L.: The Dirichlet problem for singularly perturbed elliptic equations. Comm. Pure Appl. Math. 51, 1445–1490 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin, C.S., Ni, W.M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Differential Equations 72, 1–27 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  13. Ni, W.M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math. 44, 819–851 (1991).

    MathSciNet  MATH  Google Scholar 

  14. Ni, W.M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247–281 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  15. Ni, W.M., Takagi, I., Yanagida, E.: Stability of least energy patterns of the shadow system for an activator-inhibitor model. Japan J. Indust. Appl. Math. 18, 259–272 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  16. Ni, W.M., Wei, J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Comm. Pure Appl. Math. 48, 731–768 (1995).

    MathSciNet  MATH  Google Scholar 

  17. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer-Verlag, New York, Berlin, Heidelberg and Tokyo (1984).

    MATH  Google Scholar 

  18. Struwe, M.: Variational Methods; Application to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer-Verlag (1990).

  19. Wei, J., Winter, M.: Higher-order energy expansions and spike locations. Calculus of Variations and PDE 20, 403–430 (2004).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeyoung Byeon.

Additional information

The research of the first author was supported in part by KRF-2002-070-C000005 of Korea Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byeon, J., Park, J. Singularly perturbed nonlinear elliptic problems on manifolds. Calc. Var. 24, 459–477 (2005). https://doi.org/10.1007/s00526-005-0339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-005-0339-4

Keywords

Navigation